Connected car: From mobile broadband to genuine V2X

Connected cars are moving fast

Over the past two decades, vehicles have been making increasing use of cellular connectivity for a variety of purposes from pay-as-you-drive insurance and rentals to remote (un)locking and automated emergency calls. Now automobiles are beginning to harness C-V2X – versions of LTE and 5G specifically designed to meet the needs of connected cars.

This report outlines the growing momentum behind V2X connectivity, the various connectivity options and the strategies of leading connected car makers, before providing some forecasts for the growth in connected vehicles between now and 2028. It then considers many of the key use cases, categorising them according to how frequently the vehicle needs to obtain new data from external sources. Finally, the report profiles the efforts of several telcos that have achieved scale in this market, before drawing some conclusions.

Enter your details below to download an extract of the report

Who is driving the connected car market?

C-V2X connectivity is now being built into vehicles by various Chinese automakers, as well as GM, Ford and Audi, according to the 5G Automotive Association (5GAA), which is a global, cross-industry organisation representing companies from the automotive, technology, and telecommunications sectors.

The 5GAA has described 2023 as “a pivotal year for V2X deployment”, partly because the technology is increasingly being standardised and partly because of the regulatory drivers discussed later in this section.

While cellular connectivity is already used by tens of millions of vehicles worldwide, the deployment of C-V2X is still very nascent.

Direct mode C-V2X clearly depends on the deployment of 5.9GHz modems inside vehicles and in roadside units and other public infrastructure. The latter will need to be densely deployed, as the range of each unit could drop to around 100 metres when buildings are in the way. These roadside units typically employ either an Ethernet cable or a wireless link for backhaul.

As the business case rests primarily on a reduction in congestion and accidents, the rollout of this infrastructure is likely to be funded primarily by general taxation and/or road tolls. Therefore, much of the direct mode infrastructure will probably be deployed and controlled by municipalities and road operators, but this responsibility could be outsourced to telcos. In China, where the government retains close control over both the telecoms and transport sectors, this infrastructure is already widely deployed in some cities.

Increasingly sophisticated roadside units are also becoming available in the rest of the world from specialist companies, such as Applied Information, Askey, Commsignia, Harman Automotive (part of Samsung) and Yunex Traffic. Other vendors supplying road-side unit (RSU) hardware – or software for inclusion on third-party hardware – include Cohda Wireless, Capgemini, Kapsch TrafficCom, Grand-Tek and others. Chinese telecoms equipment suppliers Huawei and ZTE had solutions listed by 5GAA in a 2021 list of RSU suppliers, but Ericsson and Nokia did not, and they may choose to license products from other vendors.

In May 2022, Yunex Traffic, for example, launched the RSU2X, which can use DSRC or C-V2X signals to transmit speed limits, red light notices and wrong-way warnings to the onboard units in automakers’ 2023 model vehicles. The RSU2X can also capture the car’s speed, direction, and location for use by connected safety systems. Yunex says the unit is capable of handling 4,000 message verifications and 130 message signature operations per second. The RSU2X has four times the computing power of Yunex’s previous model.

Yunex Traffic claims its new RSU2X can handle 4,000 messages per second

Source: Yunex Traffic

Some of the latest roadside units, such as Harman Automotive’s Savari StreetWAVE, include support for 5G, as well as C-V2X and DSRC (5.855 to 5.925GHz), Wi-Fi and LoRaWAN.

C-V2X is also being integrated into new vehicles. For example, in September 2022, Autotalks, a fabless semiconductor company based in Israel, said two Chinese automakers had ordered its V2X communication solutions. In the press release, Autotalks said the first V2X-enabled car brand will be launched in China in the second half of 2023, while the other automaker will roll out the V2X-enabled car in both China and Europe starting in early 2024.

“China’s V2X market continues gearing up towards implementation of the government’s ambitious intelligent transportation strategy,” Autotalks said at the time. “All leading automakers, local and global, are expected to start massive deployment of V2X technology in China in the coming years. The market is moving towards massive adoption of V2X as most OEMs are preparing to launch V2X-powered vehicles by 2025.”

Table of contents

  • Executive Summary
  • The road to automated driving
  • Introduction: V2X market momentum
    • Who is driving the market?
    • Regulatory moves on both sides of the Atlantic
  • V2X connectivity options
    • History and background to automotive connectivity
    • Dedicated and localised V2X networks
    • National and wide-area V2X
    • How much data traffic can be expected?
    • The role of private/non-public mobile networks
    • Spectrum considerations
    • Summary of the connectivity options
  • Automakers’ adoption of connectivity
    • Ford aims to monetise connectivity
    • BMW continues to champion connectivity
    • Audi looks to harness 5G
    • Baidu explores V2X for self-driving
    • How many connected vehicles are there?
    • SK Telecom looks skyward
  • Connected vehicle use cases
    • Batch-based use cases
    • Pulse use cases
    • High-frequency use cases
    • Real-time applications
    • Reducing the need for onboard compute
    • Avoiding collisions
  • Telcos connecting vehicles at scale
    • Vodafone Automotive: 5,000 alerts a day
    • AT&T: Serving more than 60 million vehicles
    • Mobile: Delivering the internet of vehicles
  • Conclusions
  • Index

Related research

Enter your details below to download an extract of the report

Edge computing market sizing forecast: Second release

This is the second release of STL’s edge computing revenue forecast

In this release, we update the forecast and include regional edge

The edge computing market continues to invite different types of players including telcos, hyperscalers, data centre operators and enterprise connectivity providers. The varying requirements across verticals, business sizes and use cases create an opportunity that can accommodate all these different players. However, it is important for any edge provider to understand how to position its service in the space and what areas of the market to pursue vertically and horizontally.

Through quantitative analysis, this report aims to help telcos and others to identify where opportunities lie. This report presents the key findings of STL Partners’ demand forecast model for edge computing services. Its purpose is to:

  • Assess the demand from 20 use cases which currently rely on edge or will require edge to fully develop;
  • Identify the total revenue across the value chain: device, connectivity, application, edge infrastructure (regional, network and on-premise), and integration and support;
  • Output a full set of results for over 90 countries over the 2020–2030 period per use case and per vertical.

This report is accompanied by a dashboard which presents a summary of our model output and the associated graphics for the world’s regions and for 20 major markets. The dashboard also presents the full revenue output for the 97 countries.

Download the accompanying spreadsheet 

Edge computing addressable revenue will reach US$445 billion by 2030

High-level findings from the model indicate that:

  • The total edge computing addressable market will grow from US$9 billion in 2020 to US$445 billion in 2030 at a CAGR of 48% over the 10-year period.
  • We now forecast regional edge in addition to network and on-prem edge. Regional edge refers to local edge data centres that are outside the telecoms operators’ network. Examples of these include internet exchange data centres, small data centres in Tier 2/3 cities, AWS Local Zones, etc.
  • The vertical opportunities in on-prem and distributed edge are quite different. Telcos and other providers that are looking into the various types of infrastructure to offer edge services should evaluate these differences and assess their own capabilities and willingness to compete in these verticals.
  • The growth in the number of connected devices, as well as the need for higher levels of automation, operational efficiency and cost reduction, will drive the adoption of edge computing across many use cases and verticals over the next 10 years. This will result in increased spend across the value chain.

Enter your details below to download an extract of the report

Total edge computing addressable revenue 2020–2030

This forecast is part of our Edge Insights Service which also includes:

Enter your details below to download an extract of the report

Should telcos dive deeper into energy?

Introduction

Some telcos have been dabbling in the energy market for a decade or more, partly reflecting the interdependent nature of the two industries. In the past two years, energy has climbed up the agenda of telcos’ management teams, as the electricity and gas sectors experience another major wave of disruption.

In much of the world, energy prices have surged as a result of the war in the Ukraine and the subsequent sanctions against Russia. At the same time, the ongoing transition to renewable energy in response to climate change is opening up new sources of supply and bringing in new players. The cost of wind and solar power, and battery storage is falling steadily, while many policymakers are introducing further incentives to hasten the transition away from oil, natural gas and coal.

Enter your details below to download an extract of the report

In 2022, energy prices have surged around the world

Source: The IEA

In August 2022, for example, US President Joe Biden signed the Inflation Reduction Act, bringing with it, tax incentives and other measures that should significantly boost the deployment of renewable energy and storage (large-scale batteries). The Act earmarks US$369 billion to help bring about a 40% reduction in greenhouse gas levels by 2030, by supporting electric vehicles (EVs), energy efficiency and building electrification, wind, solar photovoltaic (PV), green hydrogen, battery storage and other technologies. For example, the Act introduces an investment tax credit for standalone energy storage, which can lower the capital cost of equipment by about 30%.

As policymakers and consumers seek out new energy propositions to try and contain rising costs and greenhouse gas emissions, some telcos, such as Telstra and Polsat Plus, are seeing strategic opportunities to build deeper relationships with households. To that end, they are pushing deeper into the energy market, investing in generation capacity, as well as developing retail propositions.

Our landmark report The Coordination Age: A third age of telecoms explained how reliable and ubiquitous connectivity can enable companies and consumers to use digital technologies to efficiently allocate and source assets and resources. In the case of energy, telcos could develop solutions and services that can help consumers and businesses manage their own consumption and sell excess power back to the grid.

This report explores why telcos may want to get involved in the energy market, what their options are and presents case studies, outlining the steps some telcos have already taken. It considers the key advantages/assets that telcos can exploit in the energy market, illustrated by short case studies:

  • Extensive distribution networks
  • Established brand names
  • Billing relationships and payment mechanisms (mobile money/carrier billing)
  • Existing connectivity and IoT expertise
  • Big buyers of energy and in-house energy management expertise

The subsequent chapters in the report include an in-depth review of Telstra’s end-to-end energy strategy, the economics of energy retailing and whether telcos should move into energy generation and storage. The penultimate chapter, which considers how to engage consumers, is followed by conclusions summarising how telcos can help address some of the challenges facing energy suppliers and buyers.

Table of Contents

  • Executive Summary
  • Introduction
  • Extensive distribution networks
    • Case study 1: Polsat Plus – bundling telecoms & electricity
    • Case study 2: Orange Energy Africa – distributing solar kits
  • Established Brands
    • Case Study 1: Singtel Power – taking on the incumbent
    • Case study 2: Building a Reliance Jio for energy
  • Billing relationships and payment mechanisms
    • Case Study: MTN Nigeria – Pay as you go solar
  • Existing connectivity and IoT expertise
    • Case study 1: Telefónica España – monitoring solar panels
    • Case study 2: Proximus – electric vehicle charging
  • Energy buying and management expertise
    • Case study 1: Vodafone – enabling energy data management
    • Case study 2: Elisa – balancing the electricity grid
  • In depth case study: Telstra Energy
    • The strategic justification
    • How the IoT and AI can help
  • The Economics of Energy Retailing
    • An even tighter regulatory regime
  • Telcos and energy storage and generation
    • Competition from other investors
    • Planning permission
    • Grid connections
  • Engaging consumers
    • Ripple Energy – consumer ownership
  • Conclusions

Related research

 

Enter your details below to download an extract of the report

Capturing the 5G SA opportunity: towards a multi-vendor approach

The 5G SA opportunity

5G SA is an exciting prospect for telecoms operators. With many operators’ revenues from traditional connectivity beginning to stagnate, or even decline, there is increased pressure for operators to create differentiation and offer new services, including by expanding across the value chain from connectivity-only providers.

STL Partners has described this new era, whereby operators must shift their business models to adapt to the new demands, as the Coordination Age 2. From the 1850s until around 1990, the Communications Age enabled people to communicate over long distances via telephony. Next came the Information Age, in which people could directly access content and applications, increasingly provided by non-telecommunications players. In the Coordination Age, ‘things’ are increasingly connecting to other ‘things’, leading to an exponential increase in volumes of data, but thanks to advanced analytics and artificial intelligence (AI) we can also address some of the most pressing issues facing the world today: ensuring resource efficiency and improving productivity to help us to do more with less.

Operators need to define their role in the emerging coordination age


Source: STL Partners

Transitioning to the Coordination Age requires operators to shift their goals and business models accordingly. Operators will need to offer or enable tightly coupled network services and applications to different industries, and continue to refresh, optimise and scale at an unprecedented rate.

Enter your details below to download an extract of the report

The transformative potential of 5G SA

5G SA, in comparison to its NSA counterpart, is the evolution of 5G that can deliver on the promises associated with the next generation of cellular networking. 5G SA is intended to be cloud native and adopt cloud-native principles. Without SA, 5G networks are less able to quickly launch new services, enable new use cases, or introduce more scalable, automated operating models.

The opportunities to which 5G SA is expected to give rise have been explored extensively in previous STL research. The ‘full potential’ of 5G SA includes promises around higher throughput, greater capacity, the ability to leverage enhanced mobile broadband (eMBB), ultra-reliable low latency communications (URLLC), and massive machine type communications (mMTC). In summary; do more (including enabling more connections at any given time), faster (down to a latency of a few milliseconds) and at a lower cost (through a variety of actors, including lower power consumption than 4G). These new capabilities are exciting for operators: enabling operators to develop powerful new applications for their customers with truly differentiated use cases.

One particular opportunity that 5G SA represents is network slicing. Slicing can be defined as ‘a mechanism to create and dynamically manage functionally discrete, virtualised networks over a common infrastructure,’ and has been the subject of several STL reports. The increased flexibility and agility of network slicing can enable operators to provide unique policies and differentiated services to their enterprise customers and recoup the substantial investments that rolling out 5G SA requires. However, the benefits and opportunities of 5G SA have implications far beyond the new services it can enable. For the first time, 5G is cloud-native by design, with modular service-based architecture giving
rise to greater flexibility and programmability. Furthermore, it leverages IT concepts of virtualization, cloudification, and DevOps processes. This does not so much enable as actively encourage a more agile operating model. Some of the exciting features of 5G SA include:

  • Automation – Increased automation throughout the network, including deployment, orchestration, assurance, and optimisation can give rise to “zero touch” networks that do not require human intervention, and can self repair and update autonomously on an ongoing basis. The aim of network automation is to reduce human error and the time taken to resolve issues through closed-loop network assurance.
  • Disaggregation – Relies on an open standard network operating system whereby different functional components of networking equipment can be deployed individually and then combined in a modular, fit for purpose way, to suit the requirements of an operator’s network. This architecture relies on the interworking between the multi-vendor components within the 5G core. Disaggregation can allow vendors to offer best in class capabilities for each individual component, providing operators with unprecedented choice and customizability.
  • Avoiding vendor lock-in through a diversified supply base – One of the key benefits of a disaggregated approach to the 5G core is to break vendor lock-in that has tended to dominate legacy approaches. Vendor lock-in can be a key limitation on the speed of innovation and service deployment.
  • Agility – Adopting a continuous improvement and development means accelerated innovation and speed of deployment. A software-orientated infrastructure can enable changes in business processes such as product development management to happen at a greater pace and speed time to market for new revenue generating products and features.
  • Scalability through adopting ‘hyperscale economics’ – Explored by STL Partners in previous research, this term describes the emulation of business and software practices developed by hyperscalers to deliver service innovation at scale whilst simultaneously reducing the level of capex relative to revenue.

Cloud native is the only way to truly unlock the benefits of 5G thanks to the automation, efficiency,
optimisation and mode of delivery that it enables. Ultimately, it allows operators to maximise the
opportunity of 5G to develop differentiated services to consumer and enterprises customers.

 

Table of Contents:

  • Executive Summary
    • Recommendations
  • Preface
  • The 5G SA opportunity
    • The transformative potential of 5G SA
    • 5G SA requires operators to develop and foster a new set of skills
    • Some open questions remain around 5G SA
  • The early adopter 5G SA landscape
    • Orange
    • Vodafone
    • Dish
  • Tier 2 and Tier 3 operator approaches to 5G SA
    • Adherents to a single vendor approach
    • Proponents of a multi-vendor approach
    • Several factors can influence an operators’ vendor strategy
  • Recommendations

Related research

Enter your details below to download an extract of the report

Empowering hybrid working

Hybrid working is here to stay

The Covid-19 pandemic disrupted business as usual, accelerating significant changes to every aspect of life, including to the nature of work and how it’s organised. As enterprises turned to remote working to navigate this new reality, an important paradigm shift began to unravel: work is no longer confined to a physical location. Today, while some organisations are seeking to reduce levels of remote working, it’s far from being over. In fact, many employers have developed corporate policies for the post-pandemic world of hybrid working—a term used to describe the mixture of remote/home and on-site/office working.

This report focuses on hybrid working and the opportunities it presents for telecoms operators to support their enterprise customers as they adapt for the long-term. We believe that operators can and should expand their role in assuring hybrid working is optimal. They should build on connectivity provision, through applications and all the way to workforce empowerment. We define the latter as providing end-to-end support to enterprise customers evolving their organisations to a thriving hybrid working environment- this can include best practice process design, advisory services, privacy-compliant user analytics, coaching and end-to-end solution delivery.

To inform our thinking, we have conducted a global enterprise survey with 400+ respondents and an interview programme with 11 telecom operators. The research has confirmed what we have already observed anecdotally and in existing studies (e.g. home working to become a legal right in the Netherlands) — hybrid working is here to stay. Employees seem to be embracing this change with open arms: ~ 79% of survey respondents indicated that, for the most part, their teams have some members working from the office/on-site and some working from home/remotely. In fact, the majority of employees surveyed (54%) claim to have some autonomy over the location from where they work while a further 36% indicate that they have total autonomy over this issue. The interview programme with telecom operators echoed these findings as all 11 interviewees mentioned that they practice hybrid working.

When it comes to employees’ experiences with hybrid working, the surface level findings show that across the board, people are generally quite satisfied. When asked to evaluate its impact on the quality of their lives, 91% of survey respondents said that it has been overall positive. This figure was slightly lower for people working in HR and Sales and Marketing roles. The biggest benefits of hybrid working, as stated by survey respondents, included reduced commute time, greater autonomy over one’s schedule/time, as well as fewer distractions and interruptions.

Enter your details below to request an extract of the report

Top benefits are reduced commute time and autonomy over one’s time

Source: STL Partners

On top of this, according to the survey, hybrid working has helped organisations attract more talent for existing roles and appeal to a wider talent base:

Hybrid working has allowed my organisation to…

Source: STL Partners

Table of Contents

  • Executive Summary
  • Hybrid working is here to stay
  • Workforce empowerment: A telco opportunity
  • Why are telcos well positioned to enable workforce empowerment?
  • Conclusion: CSPs shouldnt waste the hybrid working opportunity
  • Index

Related research:

Enter your details below to request an extract of the report

5G standalone (SA) core: Why and how telcos should keep going

Major 5G Standalone deployments are experiencing delays…

There is a widespread opinion among telco industry watchers that deployments of the 5G Standalone (SA) core are taking longer than originally expected. It is certainly the case that some of the world’s leading operators, and telco cloud innovators, are taking their time over these deployments, as illustrated below:

  • AT&T: Has no current, publicly announced deadline for launching its 5G SA core, which was originally expected to be deployed in mid-2021.
  • Deutsche Telekom: Launched an SA core in Germany on a trial basis in September 2022, having previously acknowledged that SA was taking longer than originally expected. In Europe, the only other opco that is advancing towards commercial deployment is Magenta Telekom in Austria. In 2021, the company cited various delay factors, such as 5G SA not being technically mature enough to fulfil customers’ expectations (on speed and latency), and a lack of consumer devices supporting 5G SA.
  • Rakuten Mobile: Was expected to launch an SA core co-developed with NEC in 2021. But at the time of writing, this had still not launched.
  • SK Telecom: Was originally expected to launch a Samsung-provided SA core in 2020. However, in November 2021, it was announced that SK Telecom would deploy an Ericsson converged Non-standalone (NSA) / SA core. By the time of writing, this had still not taken place.
  • Telefónica: Has carried out extensive tests and pilots of 5G SA to support different use cases but has no publicly announced timetable for launching the technology commercially.
  • Verizon: Originally planned to launch its SA core at the end of 2021. But this was pushed back to 2022; and recent pronouncements by the company indicate a launch of commercial services over the SA core only in 2023.
  • Vodafone: Has launched SA in Germany only, not in any of its other markets; and even then, nationwide SA coverage is not expected until 2025. An SA core is, however, expected to be launched in Portugal in the near future, although no definite deadline has been announced. A ‘commercial pilot’ in three UK cities, launched in June 2021, had still not resulted in a full commercial deployment by the time of writing.

…but other MNOs are making rapid progress

In contrast to the above catalogue of delay, several other leading operators have made considerable progress with their standalone deployments:

  • DISH: Launched its SA core- and open RAN-based network in the US, operated entirely over the AWS cloud, in May 2022. The initial population coverage of the network was required to be 20%. This is supposed to rise to 70% by June 2023.
  • Orange: Proceeding with a Europe-wide roll-out, with six markets expected to go live with SA cores in 2023.
  • Saudi Telecom Company (STC): Has launched SA services in two international markets, Kuwait (May 2021) and Bahrain (May 2022). Preparations for a launch in Saudi Arabia were ongoing at the time of writing.
  • Telekom Austria Group (A1): Rolling out SA cores across four markets in Central Europe (Bulgaria, Croatia, Serbia and Slovenia), although no announcement has been made regarding a similar deployment in its home market of Austria. In June 2022, A1 also carried out a PoC of end-to-end, SA core-enabled network slicing, in partnership with Amdocs.
  • T-Mobile US: Has reportedly migrated all of its mobile broadband traffic over to its SA core, which was launched back in 2020. It also launched one of the world’s first voice-over-New Radio (VoNR) services, run over the SA core, in parts of two cities in June 2022.
  • Zain (Kuwait): Launched SA in Saudi Arabia in February 2022, while a deployment in its home market was ongoing at the time of writing.
  • There are also a number of trials, and prospective and actual deployments, of SA cores over the public cloud in Europe. These are serving the macro network, not edge or private-networking use cases. The most notable examples include Magenta Telekom (Deutsche Telekom’s Austrian subsidiary, partnering with Google Cloud); Swisscom (partnering with AWS); and Working Group Two (wgtwo) – a Cisco and Telenor spin-off – that offers a multi-tenant, cloud-native 5G core delivered to third-party MNOs and MVNOs via the AWS cloud.
  • The three established Chinese MNOs are all making rapid progress with their 5G SA roll-outs, having launched in either 2020 (China Telecom and China Unicom) or 2021 (China Mobile). The country’s newly launched, fourth national player, Broadnet, is also rolling out SA. However, it is not publicly known what share of the country’s reported 848 million-odd 5G subscribers (at March 2022) were connected to SA cores.
  • At least eight other APAC operators had launched 5G SA-based services by July 2022, including KT in South Korea, NTT Docomo and SoftBank in Japan and Smart in the Philippines.

Enter your details below to request an extract of the report

Many standalone deployments in the offing – but few fixed deadlines

So, 5G standalone deployments are definitely a mixed bag: leading operators in APAC, Europe, the Middle East and North America are deploying and have launched at scale, while other leading players in the same regions have delayed launches, including some of the telcos that have helped drive telco cloud as a whole over the past few years, e.g. AT&T, Deutsche Telekom, Rakuten, Telefónica and Vodafone.

In the July 2022 update to our Telco Cloud Deployment Tracker, which contained a ‘deep dive’ on 5G core roll-outs, we presented an optimistic picture of 5G SA deployments. We pointed out that the number of SA and converged NSA / SA cores. We expect to be launched in 2022 outnumbered the total of NSA deployments. However, as illustrated in the figure below, SA and converged NSA/SA cores are still the minority of all 5G cores (29% in total).

We should also point out that some of the SA and converged NSA / SA deployments shown in the figure below are still in progress and some will continue to be so in 2023. In other words, the launch of these core networks has been announced and we have therefore logged them in our tracker, but we expect that the corresponding deployments will be completed in the remainder of 2022 or in 2023, based on a reasonable, typical gap between when the deployments are publicly announced and the time it normally takes to complete them. If, however, more of these predicted deployments are delayed as per the roll-outs of some of leading players listed above, then we will need to revise down our 2022 and 2023 totals.

Global 5G core networks by type, 2018 to 2023

 

Source: STL Partners

Table of contents

  • Executive Summary
  • Introduction
    • Major 5G Standalone deployments are experiencing delays
    • …but other MNOs are making rapid progress
    • Many SA deployments in the offing – but few fixed deadlines
  • What is holding up deployments?
    • Mass-market use cases are not yet mature
    • Enterprise use cases exploiting an SA core are not established
    • Business model and ROI uncertainty for 5G SA
    • Uncertainty about the role of hyperscalers
    • Coordination of investments in 5G SA with those in open RAN
    • MNO process and organisation must evolve to exploit 5G SA
  • 5G SA progress will unlock opportunities
    • Build out coverage to improve ‘commodity’ services
    • Be first to roll out 5G SA in the national market
    • For brownfield deployments, incrementally evolve towards SA
    • Greenfield deployments
    • Carefully elaborate deployment models on hyperscale cloud
    • Work through process and organisational change
  • Conclusion: 5G SA will enable transformation

    Related research

    Previous STL Partners reports aligned to this topic include:

  • Telco Cloud Deployment Tracker: 5G core deep dive
  • Telco cloud: short-term pain, long-term gain
  • Telco Cloud Deployment Tracker: 5G standalone and RAN

Enter your details below to request an extract of the report

Will web 3.0 change the role of telcos?

Introduction

Over the past 12 months or so, the notion that the Internet is about to see another paradigm shift has received a lot of airtime. Amid all the dissatisfaction with way the Internet works today, the concept of a web 3.0 is gaining traction. At a very basic level, web 3.0 is about using blockchains (distributed ledgers) to bring about the decentralisation of computing power, resources, data and rewards.

STL Partners has written extensively about the emergence of blockchains and the opportunities they present for telcos. But this report takes a different perspective – it considers whether blockchains and the decentralisation they embody will fix the public Internet’s flaws and usher in a new era of competition and innovation. It also explores the potential role of telcos in reinventing the web in this way and whether it is in their interests to support the web 3.0 movement or protect the status quo.

Our landmark report The Coordination Age: A third age of telecoms explained how reliable and ubiquitous connectivity can enable companies and consumers to use digital technologies to efficiently allocate and source assets and resources. In the case of web 3.0, telcos could help develop solutions and services that can help bridge the gap between the fully decentralised vision of libertarians and governments’ desire to retain control and regulate the digital world.

As it considers the opportunities for telcos, this report draws on the experiences and actions of Deutsche Telekom, Telefónica and Vodafone. It also builds on previous STL Partners reports including:

Enter your details below to download an extract of the report

What do we mean by web 3.0?

The term web 3.0 is widely used to refer to the next step change in the evolution of the Internet. For some stakeholders, it is about the integration of the physical world and the digital world through the expansion of the Internet of Things, the widespread use of digital twins and augmented reality and virtual reality. This concept, which involves the capture and the processing of vast amounts of real-time, real-world data, is sometimes known as the spatial web.

While recognising the emergence of a spatial web, Nokia, for example, has defined web 3.0 as a “visually dynamic smart web” that harness artificial intelligence (AI) and machine learning (ML). It describes web 3.0 as an evolution of a “semantic web” with capacity to understand knowledge and data. Nokia believes that greater interconnectivity between machine-readable data and support for the evolution of AI and ML across “a distributed web” could remake ecommerce entirely.

Note, some of these concepts have been discussed for more than a decade. The Economist wrote about the semantic web in 2008, noting then that some people were trying to rebrand it web 3.0.

Today, the term web 3.0 is most widely used as a shorthand for a redistribution of power and data – the idea of decentralising the computation behind Internet services and the rewards that then ensue. Instead of being delivered primarily by major tech platforms, web 3.0 services would be delivered by widely-distributed computers owned by many different parties acting in concert and in line with specific protocols. These parties would be rewarded for the work that their computers do.

This report will focus primarily on the latter definition. However, the different web 3.0 concepts can be linked. Some commentators would argue that the vibrancy and ultimate success of the spatial web will depend on decentralisation. That’s because processing the real-world data captured by a spatial web could confer extraordinary power to the centralised Internet platforms involved. Indeed, Deloitte has made that link (see graphic below).

In fact, one of the main drivers of the web 3.0 movement is a sense that a small number of tech platforms have too much power on today’s Internet. The contention is that the current web 2.0 model reinforces this position of dominance by funnelling more and more data through their servers, enabling them to stay ahead of competitors. For web 3.0 proponents, the remedy is to redistribute these data flows across many thousands of different computers owned by different entities.  This is typically accomplished using what is known as decentralised apps (dapps) running on a distributed ledger (often referred to as a blockchain), in which many different computers store the code and then record each related interaction/transaction.

The spatial web and web 3.0 – two sides of the same coin?

Spacial-web-Web3-Deloitte

Source: Deloitte

For many commentators, distributed ledgers are at the heart of web 3.0 because they enable the categorisation and storage of data without the need for any central points of control. In an article it published online, Nokia predicted new application providers will displace today’s tech giants with a highly distributed infrastructure in which users own and control their own data. “Where the platform economy gave birth to companies like Uber, Airbnb, Upwork, and Alibaba, web 3.0 technology is driving a new era in social organization,” Nokia argues. “Leveraging the convergence of AI, 5G telecommunications, and blockchain, the future of work in the post-COVID era is set to look very different from what we’re used to. As web 3.0 introduces a new information and communications infrastructure, it will drive new forms of distributed social organisation…Change at this scale could prove extremely challenging to established organisations, but many will adapt and prosper.”

Nokia appears to have published that article in March 2021, but the changes it predicted are likely to happen gradually over an extended period. Distributed ledgers or blockchains are far from mature and many of their flaws are still being addressed. But there is a growing consensus that they will play a significant role in the future of the Internet.

Nokia itself is hoping that the web 3.0 movement will lead to rising demand for programmable networks that developers can harness to support decentralised services and apps. In June 2022, the company published a podcast in which Jitin Bhandari, CTO of Cloud and Network Services at Nokia, discusses the concept of “network as code” by which he means the creation of a persona of the network that can be programmed by ecosystem developers and technology application partners “in domains of enterprise, in domains of web 2.0 and web 3.0 technologies, in domains of industry 4.0 applications, in scenarios of operational technology (OT) applications.”  Nokia envisions that 5G networks will be able to participate in what it calls distributed service chains – the interlinking of multiple service providers to create new value.

Although blockchains are widely associated with Bitcoin, they can enable much more than crypto-currencies. As a distributed computer, a blockchain can be used for multiple purposes – it can store the number of tokens in a wallet, the terms of a self-executing contract, or the code for a decentralised app.

As early as 2014, Gavin Wood, the founder of the popular Ethereum blockchain, laid out a vision that web 3.0 will enable users to exchange money and information on the web without employing a middleman, such as a bank or a tech company. As a result, people would have more control over their data and be able to sell it if they choose.

Today, Ethereum is one of the most widely used (and trusted) blockchains. It bills itself as a permissionless blockchain, which means no one controls access to the service – there are no gatekeepers.

Still, as the Ethereum web site acknowledges, there are several disadvantages to web 3.0 decentralisation, as well as advantages. The graphic below which draws on Ethereum’s views and STL analysis, summarises these pros and cons.

Table of Contents

  • Executive Summary
    • Three ways in which telcos can support web 3.0
    • Challenges facing web 3.0
  • Introduction
  • What do we mean by web 3.0?
    • Transparency versus privacy
    • The money and motivations behind web 3.0
    • Can content also be unbundled?
    • Smart contracts and automatic outcomes
    • Will we see decentralised autonomous organisations?
    • Who controls the user experience?
    • Web 3.0 development on the rise
  • The case against web 3.0
    • Are blockchains really the way forward?
    • Missteps and malign forces
  • Ironing out the wrinkles in blockchains
  • Could and should telcos help build web 3.0?
    • Validating blockchains
    • Telefónica: An interface to blockchains
    • Vodafone: Combining blockchains with the IoT
  • Conclusions

Enter your details below to download an extract of the report

VNFs on public cloud: Opportunity, not threat

VNF deployments on the hyperscale cloud are just beginning

Numerous collaboration agreements between hyperscalers and leading telcos, but few live VNF deployments to date

The past three years have seen many major telcos concluding collaboration agreements with the leading hyperscalers. These have involved one or more of five business models for the telco-hyperscaler relationship that we discussed in a previous report, and which are illustrated below:

Five business models for telco-hyperscaler partnerships

Source: STL Partners

In this report, we focus more narrowly on the deployment, delivery and operation by and to telcos of virtualised and cloud-native network functions (VNFs / CNFs) over the hyperscale public cloud. To date, there have been few instances of telcos delivering live, commercial services on the public network via VNFs hosted on the public cloud. STL Partners’ Telco Cloud Deployment Tracker contains eight examples of this, as illustrated below:

Major telcos deploying VNFs in the public cloud

Source: STL Partners

Enter your details below to request an extract of the report

Telcos are looking to generate returns from their telco cloud investments and maintain control over their ‘core business’

The telcos in the above table are all of comparable stature and ambition to the likes of AT&T and DISH in the realm of telco cloud but have a diametrically opposite stance when it comes to VNF deployment on public cloud. They have decided against large-scale public cloud deployments for a variety of reasons, including:

  • They have invested a considerable amount of money, time and human resources on their private clouddeployments, and they want and need to utilise the asset and generate the RoI.
  • Related to this, they have generated a large amount of intellectual property (IP) as a result of their DIY cloud– and VNF-development work. Clearly, they wish to realise the business benefits they sought to achieve through these efforts, such as cost and resource efficiencies, automation gains, enhanced flexibility and agility, and opportunities for both connectivityand edge compute service innovation. Apart from the opportunity cost of not realising these gains, it is demoralising for some CTO departments to contemplate surrendering the fruit of this effort in favour of a hyperscaler’s comparable cloud infrastructure, orchestration and management tools.
  • In addition, telcos have an opportunity to monetise that IP by marketing it to other telcos. The Rakuten Communications Platform (RCP) marketed by Rakuten Symphony is an example of this: effectively, a telco providing a telco cloud platform on an NFaaS basis to third-party operators or enterprises – in competition to similar offerings that might be developed by hyperscalers. Accordingly, RCP will be hosted over private cloud facilities, not public cloud. But in theory, there is no reason why RCP could not in future be delivered over public cloud. In this case, Rakuten would be acting like any other vendor adapting its solutions to the hyperscale cloud.
  • In theory also, telcos could also offer their private telcoclouds as a platform, or wholesale or on-demand service, for third parties to source and run their own network functions (i.e. these would be hosted on the wholesale provider’s facilities, in contrast to the RCP, which is hosted on the client telco’s facilities). This would be a logical fit for telcos such as BT or Deutsche Telekom, which still operate as their respective countries’ communications backbone provider and primary wholesale provider

BT and Deutsche Telekom have also been among the telcos that have been most visibly hostile to the idea of running NFs powering their own public, mass-market services on the public and hyperscale cloud. And for most operators, this is the main concern making them cautious about deploying VNFs on the public cloud, let alone sourcing them from the cloud on an NFaaS basis: that this would be making the ‘core’ telco business and asset – the network – dependent on the technology roadmaps, operational competence and business priorities of the hyperscalers.

Table of contents

  • Executive Summary
  • Introduction: VNF deployments on the hyperscale cloud are just beginning
    • Numerous collaboration agreements between hyperscalers and leading telcos, but few live VNF deployments to date
    • DISH and AT&T: AWS vs Azure; vendor-supported vs DIY; NaaCP vs net compute
  • Other DIY or vendor-supported best-of-breed players are not hosting VNFs on public cloud
    • Telcos are looking to generate returns from their telco cloud investments and maintain control over their ‘core business’
    • The reluctance to deploy VNFs on the cloud reflects a persistent, legacy concept of the telco
  • But NaaCP will drive more VNF deployments on public cloud, and opportunities for telcos
    • Multiple models for NaaCP present prospects for greater integration of cloud-native networks and public cloud
  • Conclusion: Convergence of network and cloud is inevitable – but not telcos’ defeat
  • Appendix

Related Research

 

Enter your details below to request an extract of the report

Edge computing market sizing forecast

We have updated this forecast. Check the latest report here

Introducing STL Partners’ edge computing market sizing forecast

This report presents the key findings of STL Partners’ new demand forecast model for edge computing services. Its purpose is to:

  • Assess the demand from 20 use cases which currently rely on edge or will require edge to fully develop;
  • Identify the total revenue across the value chain: hardware, connectivity, application, edge infrastructure (network and on-premise), and integration and support;
  • Output a full set of results for over 180 countries over the 2020–2030 period per use case and per vertical.

This report is accompanied by a dashboard which presents a summary of our model output and the associated graphics for the world’s regions and for 20 major markets. The dashboard also presents the full revenue output for the 180+ countries.

Enter your details below to request an extract of the report

Edge computing addressable revenue will reach US$543 billion by 2030

High-level findings from the model indicate that:

  • The growth in the number of connected devices, as well as the need for higher levels of automation, operational efficiency and cost reduction, will drive the adoption of edge computing across many use cases and verticals over the next 10 years. This will result in increased spend across the value chain.
  • The total edge computing addressable market will grow from US$10 billion in 2020 to US$543 billion in 2030 at a CAGR of 49% over the 10-year period.
  • The total value chain breaks into five main components which are hardware, connectivity, application, integration & support, in addition to the edge infrastructure which includes both on-prem edge and network edge.

Total edge computing addressable revenue

Edge computing

Source: STL Partners

Table of contents

  • Executive Summary
  • Methodology
  • Revenue by value chain component
  • Revenue by use case
  • Revenue by vertical
  • Revenue by region
  • Appendix

For more information on STL Partners’ edge-related services, please go to our Edge Insights Service page.

The new forecast is intended to complement:

<

Enter your details below to download an extract of the report

Lessons from AT&T’s bruising entertainment experience

How AT&T entered and exited the media business

AT&T enters the satellite market at its peak

In 2014, AT&T announced it was buying DirecTV. By that time, AT&T was already bundling DirecTV with its phone and internet service and had approximately 5.9 million linear pay-TV (U-Verse) video subscribers. However, this pay-TV business was already experiencing decline, to the extent that when the DirecTV merger completed in mid-2015, U-Verse subscribers had fallen to 5.6 million by the end of that year.

With the acquisition of DirecTV, AT&T went from a small player in the media and entertainment industry to one of the largest media players in the world adding 39.1 million (US and Latin American) subscribers and paying $48.5bn ($67bn including debt) to acquire the business. The rationale for this acquisition (the satellite business) was to compete with cable operators by being able to offer broadband, increasing AT&T’s addressable market beyond its fibre-based U-Verse proposition which was only available in certain locations/states.

AT&T and DirecTV enjoyed an initial honeymoon, period recording growth up until the end of 2016 when DirecTV subscribers peaked at just over 21 million in the US.

From this point onwards however, AT&T’s satellite subscribers went into decline as customers switched to cheaper competitor offers as well as online streaming services. The popularity of streaming services was reflected by moves among traditional media players to develop their own streaming services such as Time Warner’s HBO GO and HBO NOW. In 2015, DirectTV’s satellite competitor Dish TV likewise launched its own streaming service Sling TV.

Even though it was one of the largest TV distributors on a satellite platform, AT&T also believed online streaming was its ultimate destination. Prior to the launch of its streaming service in late 2016, Bloomberg reported that AT&T envisioned DirecTV NOW as its primary video platform by 2020.

A softwarised platform delivered lowered costs as the service could be self-installed by customers and didn’t rely on expensive truck roll installation or launching satellites. The improved margins would enable AT&T to promote TV packages at attractive price points which would balance inflation demands from broadcasters for the cost of TV programming. AT&T could also more easily bundle the softwarised TV service with its broadband, fibre and wireless propositions and earn more lucrative advertising revenue based on its own network and viewer insights.

Enter your details below to request an extract of the report

The beginnings of a bumpy journey in TV

AT&T’s foray into satellite and streaming TV can be characterised by a series of confusing service propositions for both consumers and AT&T staff, expensive promotional activity and overall pricing/product design misjudgements as well as troubled relations with TV broadcasters resulting in channel blackouts and ultimately churn.

Promotion, pull back and decline of DirecTV NOW

DirectTV NOW launched in November 2016, as AT&T’s first over the top (OTT) low cost online streaming service. Starting at $35 per month for 60+ channels with no contract period, analysts called the skinny TV package as a loss leader given the cost of programming rights and high subscriber acquisition costs (SACs). The loss leader strategy was aimed at acquiring wireless and broadband customers and included initiatives such as:

  • Promotional discounts to its monthly $60 mid-tier 100+ channel package reduced to $35 per month for life (subject to programming costs).
  • Device promotions and monthly waivers. The service eventually became available on popular streaming devices (Roku, Xbox and PlayStation) and included promotions such as an Apple TV 4K with a four month subscription waiver, a Roku Streaming Stick with a one month waiver or a $25 discount on the first month.
  • Customers could also add HBO or Cinemax for an additional $5 per month, which again was seen as a costly subsidy for AT&T to offer.

The service didn’t include DirecTV satellite’s popular NFL Sunday Ticket programming as Verizon held the smartphone rights to live NFL games, nor did it come with other popular shows from programme channels such as CBS. Features such as cloud DVR (digital video recording) functionality were also initially missing, but would follow as AT&T’s TV propositions and functionalities iterated and improved over time.

The DirecTV NOW streaming service enjoyed continuous quarterly growth through 2017 but peaked in Q3 2018 with net additions turning immediately negative in the final quarter of 2018 as management pulled back on costly promotions and discounted pricing.

The proposition became unsustainable financially in terms of its ability to cover rising programming costs and was positioned comparatively as a much less expensive service to its larger DirecTV satellite pay-TV propositions.

The DirecTV satellite service sold some of the most expensive TV propositions on the market and reported higher pay-TV ARPU ($131) than peers such as Dish ($89) and Comcast ($86) in Q4 2019.

  • The launch of a $35 DirecTV NOW streaming service with no contract and with a similar sounding name to the full linear service confused both new and existing DirecTV satellite customers and some would have viewed their satellite package as expensive compared to the cheaper steaming option.

Rising programming costs

AT&T’s low-cost skinny TV packages brought them into direct confrontation with TV programmers in terms of negotiating fees for content. When the streaming service launched, analysts highlighted the channels within AT&T’s base package were expected to rise in price annually by around 10% each year and this would eventually require AT&T to eventually balance programming costs with rising monthly package pricing.

Confrontations with programmers included a three-week dispute with CBS and an eight week dispute with Nexstar in 2019, which resulted in a blackout of both CBS and Nexstar channels across AT&T’s TV platforms such as Direct TV, U-Verse, DirectTV NOW. Commenting on the blackouts in Q3 2019, Randall Stephenson noted there were “a couple of significant blackouts in terms of content, and those blackouts drove some sizable subscriber losses”.

AT&T’s confrontation with content owners may have been a contributory reason to consider acquiring a content creation platform of its own in the form of Time Warner.

In mid-2018, as AT&T withdrew promotions and discounts for DirecTV NOW (later rebranded it to AT&T TV NOW), customers began to drop the OTT TV service.

  • AT&T TV NOW went from a peak of 1.86 million subscribers in Q3 2018 to 656,000 at the end of 2020.

DirecTV NOW subscriptions

DirecTV-subs-AT-T-stlpartners

Source: STL Partners, AT&T Q2 Earnings 2021

Name changes and new propositions create more confusion

In 2019, DirecTV NOW was re-branded to AT&T TV NOW , and continued to be promoted as a skinny bundle operating alongside AT&T TV, a new full fat live TV streaming version of the DirecTV satellite TV proposition. AT&T TV  was first piloted in August 2019 and soft launched in November 2019. The AT&T TV service included an Android set-top box with cloud DVR functionality and supported other apps such as Netflix.
AT&T TV required a contract period and offered pricing (once promotional discount periods ended) resembling a linear pay-TV service, i.e. $90+. This was, in effect, the very type of pay-TV proposition customers were abandoning.
AT&T TV was seen as an ultimate replacement for the satellite business based on the advantages a softwarised platform provided and the ability to bundle it with AT&T broadband, fibre and wireless services.

Confusion amongst staff and customers

The new AT&T TV proposition confused not only customers but also AT&T staff, as they were found mixing up the AT&T TV proposition with the skinny AT&T TV NOW proposition. By 2019 the company diverted its attention away from AT&T TV NOW  pulling back on promotional activity in order to focus on its core AT&T TV live TV service.

According to Cord Cutters News, both services used the same app but remained separate services. AT&T’s app store marketing incorrectly communicated the DirectTV NOW service was now AT&T TV when in fact it was AT&T TV NOW. Similarly, technical support was also incorrectly labelled with online navigation sending customers to the wrong support channels.

AT&T’s own customer facing teams misunderstood the new propositions

DirecTV-Cordcutter-news

Source: Cord Cutters News

Withdrawal of AT&T TV NOW

By January 2021, AT&T TV NOW was no longer available to new customers but continued to be available to existing customers. The AT&T TV proposition, which was supposed to offer “more value and simplicity” was updated to include some features of the skinny bundle such as the option to go without an annual contract requirement. Customers were also not required to own the set-top box but could instead stream over Amazon Fire TV or Apple TV.  In terms of pricing, AT&T TV was twice the price of the originally launched DirecTV NOW proposition costing $70 to $95 per month.

The short life of AT&T Watch TV

In April 2018, while giving testimony for AT&T’s merger with Time Warner, AT&T’s then CEO Randall Stephenson positioned AT&T Watch TV as a potential new low-cost service that would benefit consumers if the merger was successful. Days following AT&T’s merger approval in the courts, the low cost $15 per month, ultra-skinny bundle launched as a suitable low-cost cord-cutter/cord-never option for cable, broadband and mobile customers from any network. The service was also free to select AT&T Unlimited mobile customers.

By the end of 2018, the operator claimed it had 500,000 AT&T Watch TV“established accounts”. By the end of 2019 the operator had updated its mobile tariffs removing Watch TV for new customers subscribing to its updated Unlimited mobile tariffs. Some believed the company didn’t fully commit to the service, referring to the lack of roll out support for streaming devices such as Roku. The operator was now committed to rolling out its new service HBO Max in 2020. AT&T has informed Watch TV subscribers the service will close 30 November 2021.

Timeline of AT&T entertainment propositions

AT-T-Timeline-Entertainment

Source: STL Partners

The decline of DirecTV

As the graphic belowshows, in June 2021 there were 74.3 million pay-TV households in the US, reflecting continued contraction of the traditional pay-TV market supplied by multichannel video programming distributor (MVPD) players such as cable, satellite, and telco operators. According to nScreenMedia, traditional pay-TV or MVPD market lost 6.3 and 6.2 million customers over 2019 and 2020, but not all were cord-cutters. Cord-shifters dropped their pay-TV but shifted across to virtual MVPD (vMVPD) propositions such as Hulu Live, Sling TV, YouTube TV, AT&T TV NOW, Fubo TV and Philo. Based on current 2021 cord-cutting levels, nScreenMedia predicts 2021 will be the highest year of cord-cutting yet.

Decline in traditional pay-TV households

pay-tv-decline-nscreenmedia

Source: nScreenMedia, STL Partners

Satellite subscribers to Dish and DirecTV 2015-2020

Satellite-pay-tvdish-nscreenmedia

Source: nScreenMedia, STL Partners

When considering AT&T’s management of DirecTV, nScreenMedia research shows the market number of MVPD subscribers declined by over 20 million between 2016 and 2020. In that time, DirecTV lost eight million subscribers. While it represented 20% of the MVPD market in 2016, DirecTV accounted for 40% of the pay-TV losses in the market (40% of 20 million equals ~8 million). AT&T’s satellite rival Dish weathered the decline in pay-TV slightly better over the period.

  • In Q4 2020 the operator wrote down $15.5bn on its premium TV business, which included DirecTV decline, to reflect the cord cutting trend as customers found cheaper streaming alternatives online. The graphic (below) shows a loss of 8.76 million Premium TV subscribers between 2017 and 2020 with large losses of 3.4 million and 2.9 million subscribers in 2019 and 2020.

AT&T’s communications business has also been enduring losses in legacy voice and data (DSL) subscriptions in recent years. AT&T has used a bundling strategy for both products. As customers switched to AT&T fibre or competitor broadband offerings this also impacted the video subscription.

Table of contents

  • Executive Summary
    • What can others learn from AT&T’s experience?
  • How AT&T entered and exited the media business
    • AT&T enters the satellite market at its peak
    • The beginnings of a bumpy journey in TV
    • Vertical integration strategy: The culture clash
    • AT&T’s telco mindset drives its video strategy
    • HBO MAX performance
  • The financial impact of AT&T’s investments
    • Reversing six years of strategic change in three months
  • Lessons from AT&T’s foray into media

Related Reports

Enter your details below to request an extract of the report

 

How to identify and meet new customer needs

Customer-led innovation at Telia and Elisa

In order to secure competitive advantage and long-term growth, telcos need to identify and meet new customer needs. The importance of this is confirmed by the STL Partner’s Telco investment priorities survey published in January 2021. Understanding customer needs and innovation, both essential for addressing new needs and driving growth, featured in the top ten priorities.

Telco top investment  priorities

top-telco-investment-priorities-stl

Source:  STL Partners, Telecoms priorities: Ready for the crunch?

This report seeks to identify best practice for telcos. Through in-depth interviews with senior managers in Elisa and Telia, and an expert in disruptive innovation, we identify the critical success factors and lessons learned in these organisations.

Telia created Division X in 2017, a separate business unit focused on commercialising and growing revenue from emerging businesses and technologies such as IoT (including 5G), data insights, and digital B2C services. Its focus is on customer needs and speed of execution, to spearhead and accelerate innovation, which it deems necessary in Telia’s drive to “reinvent better connected living”.

International Digital Services is Elisa’s third main business division, alongside Consumer and Corporate, which serve the domestic market. As International Digital Services has matured, it has focussed specifically on addressing new needs and developing new services, in both industrial and corporate domains.

Enter your details below to request an extract of the report

The report is based on interviews with:

  • Liisa Puurunen, Vice President, Brand, CX and start-ups, International Digital Services, Elisa — Liisa has a background in leading new businesses and start-ups in Elisa in the Consumer division and International Digital Services. Liisa’s role is to understand where there are new needs to be met, and to get best practise in place across the whole customer journey, within both industrial and corporate domains.
  • Annukka Matilainen, Development Director for Omnichannel and Smart Automation, Elisa —Annukka led the Consumer team’s response to COVID-19
  • Stephanie Huf, Head of Marketing, Division X, Telia — Stephanie’s role is to support the business lines in Division X to in engaging with customers to identify their needs. For example, her team identifies what customers want, defines the value propositions and works with product and business teams to test these in line with customer insight. (Since participating in this research Stephanie Huf has moved to a new role.)
  • Anette Bohman, Strategy Director, Division X, Telia  — Anette supports and guides Division X in defining Telia’s future.
  • John McDonald, FIRSTEP — John is a strategist in disruptive innovation in the health industry in Canada. He helps leaders create alignment around how the forces of disruption are unfolding and where to place the bets. FIRSTEP works with health organisations searching for fresh insights that spark new opportunities for growth.

Create a separate team to maximise new business opportunities

A separate team has many benefits

New business requires a separate, dedicated team. Its needs are different from day-to-day business and it needs its own focus.

One of the biggest learnings for Elisa in addressing new opportunities, is that there needs to be a ‘sandbox team’ with its own resources and budgets, rules, methods and mindset. It must have access to senior managers for decision making and funding, and strong leadership.

The sandbox team needs to be remote from the demands of day-to-day operations and implementation. If finding new needs is only part of someone’s job it is difficult to manage, as short-term demands will inevitably take precedence. Delivery and experimentation are different functions and they should be separate.

Liisa Puurunen’s team is a start-up in its own right. It is leaner than the usual Elisa approach and people are only brought into the team when there is a test to be done, keeping it flexible.

Rationale for a separate team

separate-team-rationale
Source: STL Partners

Contents

  • Executive Summary
    • Create a dedicated and separate team
    • Take a customer centric approach at all stages of innovation
    • Types of innovation will meet different new needs
  • Introduction
  • Create a separate team to maximise new business opportunities
    • A separate team has many benefits
    • Telia Smart Family: The case for a separate innovations team
    • Evaluate success in relevant ways that may be non-traditional
  • Take a customer centric approach to all stages of innovation
    • Ensure a customer centric culture
    • Start with a customer problem
  • Meeting needs and scaling bets
    • Co-create with customers, but choose them carefully
    • Elisa’s empowered teams enable a successful response to COVID-19
  • Types of innovation to meet different new needs
    • New needs in the core versus new businesses
    • Dedicate some resource to extreme innovation
    • Telia Data Insights: New Business innovation in response to COVID-19
    • The case for disruptive innovation
  • Plan exit strategies
    • Perseverance and pivoting can bring success
    • Be prepared to kill your darlings

Related research

Enter your details below to request an extract of the report

ngena SD-WAN: scaling innovation through partnership

Introducing ngena

This report focusses on ngena, a multi-operator alliance founded in 2016, which offers multi-national networking services aimed at enterprise customers. ngena is interesting to STL Partners for several reasons:

First, it represents a real, commercialised example of operators working together, across borders and boundaries, to a common goal – a key part of our Coordination Age vision.

Second, ngena’s SDN product is an example of a new service which was designed around a strong, customer-centric proposition, with a strong emphasis on partnership and shared vision – an alternative articulation, if you like, of Elisa’s cultural strategy.

Third, it was born out of Deutsche Telekom, the world’s sixth-largest telecoms group by revenue, which operates in more than fifty countries. This makes it a great case study of an established operator innovating new enterprise services.

And lastly, it is a unique example of a telco and technology company (in this case Cisco) coming together in a mutually beneficial creative partnership, rather than settling into traditional buyer-supplier roles.

Over the coming pages, we will explore ngena’s proposition to customers, how it has achieved what it has to date, and to what extent it has made a measurable impact on the companies that make up the alliance. The report explains STL Partners’ independent view, informed by conversations with Marcus Hacke, Founder and Managing Director, as well as others across the industry.

Enter your details below to request an extract of the report

Shifting enterprise needs

Enterprises throughout the world are rapidly digitising their operations, and in large part, that involves the move to a ‘multicloud’ environment, where applications and data are hosted in a complex ecosystem of private data centres, campus sites, public clouds, and so on.

Digital enterprises need to ensure that data and applications are accessible from any location, at any time, from any device, and any network, reliably and without headaches. A large enterprise such as a retail bank might have physical branches located all over the place – and the same data needs to be accessible from any branch.

Traditionally, this sort of connectivity was achieved over the wide area network (WAN), with enterprises investing in private networks (often virtual private networks) to ensure that data remained secure and reliably accessible. Traditional WAN architectures work well – but they are not known for flexibility of the sort required to support a multicloud set-up. The network topology is often static, requiring manual intervention to deploy and change, and in our fast-changing world, this becomes a bottleneck. Enterprises are still faced with several challenges:

Key enterprise networking challenges

Source: STL Partners, SD-WAN mini series

The rise of SD-WAN: 2014 to present

This is where, somewhere around 2014, software-defined WAN (SD-WAN) came on the scene. SD-WAN improves on traditional WAN by applying the principles of software-defined networking (SDN). Networking hardware is managed with a software-based controller that can be hosted in the cloud, which opens up a realm of possibilities for automation, smart traffic routing, optimisation, and so on – which makes managing a multicloud set-up a whole lot easier.

As a result, enterprises have adopted SD-WAN at a phenomenal pace, and over the past five years telecoms operators and other service providers worldwide have rushed to add it to their managed services portfolio, to the extent that it has become a mainstream enterprise service:

Live deployments of SD-WAN platforms by telcos, 2014-20 (global)

Source: STL Partners NFV Deployment Tracker
Includes only production deployments; excludes proof of concepts and pilots
Includes four planned/pending deployments expected to complete in 2020

The explosion of deployments between 2016 and 2019 had many contributing factors. It was around this time that vendor offerings in the space became mature enough for the long tail of service providers to adopt more-or-less off-the shelf. But also, the technology had begun to be seen as a “no-brainer” upgrade on existing enterprise connectivity solutions, and therefore was in heavy demand. Many telcos used it as a natural upsell to their broader suite of enterprise connectivity solutions.

The challenge of building a connectivity platform

While SD-WAN has gained significant traction, it is not a straightforward addition to an operator’s enterprise service portfolio – nor is it a golden ticket in and of itself.

First, it is no longer enough to offer SD-WAN alone. The trend – based on demand – is for it to be offered alongside a portfolio of other SDN-based cloud connectivity services, over an automated platform that enables customers to pick and choose predefined services, and quickly deploy and adapt networks without the effort and time needed for bespoke customer deployments. The need this addresses is obvious, but the barrier to entry in building such a platform is a big challenge for many operators – particularly mid-size and smaller telcos.

Second, there is the economic challenge of scaling a platform while remaining profitable. Platform-based services require continuous updating and innovation, and it is questionable whether many telecoms operators are up to have the financial strength to do so – a situation you find for nearly all IT cloud platforms.

Last – and by no means least – is the challenge of scaling across geographies. In a single-country scenario, where most operators (at least in developed markets) will already have the fixed network infrastructure in place to cover all of a potential customer’s branch locations, SD-WAN works well. It is difficult, from a service provider’s perspective, to manage network domains and services across the whole enterprise (#6 above) if that enterprise has locations outside of the geographic bounds of the service provider’s own network infrastructure. There are ways around this – including routing traffic over the public Internet, and other operators’ networks, but from a customer point-of-view, this is less than ideal, as it adds complexity and limits flexibility in the solution they are paying for.

There is a need, then, for a connectivity platform “with a passport”: that can cross borders between operators, networks and markets without issue. ngena, or the Next Generation Enterprise Network Alliance, aims to address this need.

Table of Contents

  • Executive summary
    • What is ngena?
    • Why does ngena matter?
    • Has ngena been successful?
    • What does ngena teach us about successful telco innovation?
    • What does this mean for other telcos?
    • What next?
  • Introduction
  • Context: Enterprise needs and SD-WAN
    • Shifting enterprise needs
    • The rise of SD-WAN: 2014 to present
    • The challenge of building a connectivity platform
  • ngena: Enterprise connectivity with a passport
    • A man with a vision
    • The ngena proposition
  • How successful has ngena been?
    • Growth in alliance membership
    • Growth in ngena itself
    • Making money for the partners
  • What does ngena teach us about successful innovation culture in telecoms?
    • Context: the need to disrupt and adapt in telecoms
    • Lessons from ngena
  • What does this mean for other telcos?
      • Consider how you support innovation
      • Consider how you partner for mutual benefit
      • What next?

Enter your details below to request an extract of the report

The changing consumer landscape: Telco strategies for success

Winning in the evolving “in home” consumer market

COVID-19 is accelerating significant and lasting changes in consumer behaviours as the majority of the population is being implored to stay at home. As a result, most people now work remotely and stay connected with colleagues, friends, and family via video conferencing. Consumer broadband and telco core services are therefore in extremely high demand and, coupled with the higher burden on the network, consumers have high expectations and dependencies on quality connectivity.

Furthermore, we found that people of all ages (including non-digital natives) are becoming more technically aware. This means they may be willing to purchase more services beyond core connectivity from their broadband provider. At the same time, their expectations on performance are rising. Consumers have a better understanding of the products on offer and, for example, expect Wi-Fi to deliver quoted broadband speeds throughout the house and not just in proximity to the router.

As a result of this changing landscape, there are opportunities, but also challenges that operators must overcome to better address consumers, stay relevant in the market, and win “in the home”.

This report looks at the different strategies telcos can pursue to win “in the home” and address the changing demands of consumers. It draws on an interview programme with eight operators, as well as a survey of more than 1100+ consumers globally . As well as canvassing consumers’ high level views of telcos and their services, the survey explores consumer willingness to buy cybersecurity services from telcos in some depth.

Enter your details below to download an extract of the report

With increasing technical maturity comes an increasingly demanding market

Consumers are increasing in technical maturity

The consumer market as a whole is becoming much more digital. Over the past decade there has been a big shift towards online and self-service models for B2C services (e.g. ecommerce, online banking, automated chatbots, video streaming). This reflects the advent of the Coordination Age – connecting people to machines, information, and things – and the growing technical maturity of the consumer market.

COVID-19 has been a recent, but significant, driver in pushing consumers towards a more digital age, forcing the use of video conferencing and contactless interactions. Even people who are not considered digitally native are becoming increasingly tech savvy and tech capable customers.

Cisco forecasts that, between 2018 and 2023, the number of Internet users globally will increase from 51% to 66% . It has also forecast an increase in data volumes per capita per month from 1.5GB in 2017 to 9.7GB in 2022 . Depending on the roll out of 5G in different markets, this number may increase significantly as demand for mobile data increases to meet the potential increases in supply.

Furthermore, in our survey of 1,100+ consumers globally, 33% of respondents considered themselves avid users and 51% considered themselves moderate users of technology. Only 16% of the population felt they were light users, using technology only when essential for a limited number of use cases and needing significant support when purchasing and implementing new technology-based solutions.

Though this did not vary significantly by region or existing spend, it did vary (as would be expected) by age – 51% of respondents aged between 25 and 30 considered themselves avid users of technology, while only 18% of respondents over 50 said the same. Nevertheless, even within the 50+ segment, 55% considered themselves moderate users of technology.

Self-proclaimed technical maturity varies significantly by age

Source: STL Partners consumer survey analysis (n=1,131)

The growing technical maturity of consumers suggests a larger slice of the market will be ready and willing to adopt digital solutions from a telco, providing an opportunity for potential growth in the consumer market.

Consumers have higher expectations on telco services

Coupled with the increasing technical maturity comes an increase in consumer expectations. This makes the increasing technical maturity a double edged sword – more consumers will be ready to adopt more digital solutions but, with a better understanding of what’s on offer, they can also be more picky about what they receive and more demanding about performance levels that can be achieved.

An example of this is in home broadband. It is no longer sufficient to deliver quoted throughput speeds only within proximity to the router. A good Wi-Fi connection must now permeate throughout the house, so that high-quality video content and video calls can be streamed from any room without any drop in quality or connection. It must also be able to handle an increasing number of connected devices – Cisco forecasts an increase from a global average of 1.2 to 1.6 connections per person between 2018 and 2023 .

Consumers are also becoming increasingly impatient. In all walks of life, whether it be dating, technology or experiences, consumers want instant gratification. Additionally, with the faster network speeds of 4G+, fibre, and eventually 5G, consumers want (and are used to) continuous video feeds, seamless streaming, and near instant downloads – buffering should be a thing of the past.

One of our interviewees, a Northern European operator, commented: “Consumers are not willing to wait, they want everything here, now, immediately. Whether it is web browsing or video conferencing or video streaming, consumers are increasingly impatient”.

However, these demands extend beyond telco core services and connectivity. In the context of digital maturity, a Mediterranean operator noted “There is increasing demand for more specialized services…there is more of a demand on value-added, rather than core, services”.

This presents new challenges and opportunities for operators seeking growth “in the home”. Telcos need to find a way to address these changing demands to stay relevant and be successful in the consumer market.

Table of Contents

  • Executive summary
  • Introduction
  • Growing demand for core broadband and value-added services
    • COVID-19 is driving significant, and likely lasting, change
    • With increasing technical maturity comes an increasingly demanding market
  • Telcos need new ways to stay relevant in B2C
    • The consumer market is both diverse and difficult to segment
    • Should telcos be looking beyond the triple play?
  • How can telcos differentiate in the consumer market?
    • Differentiate through price
    • Differentiate through new products beyond connectivity
    • Differentiate through reliability of service
  • Conclusions and key recommendations
  • Appendices
    • Appendix 1: Consumer segments used in the survey
    • Appendix 2: Cybersecurity product bundles used in the conjoint analysis

Request STL research insights overview pack

LPWA: Which way to go for IoT?

Introduction: Why is LPWA important?

The Internet of Things (IoT) space is huge and incredibly diverse. It spans everything from remote-control of commercial drones, to consumer wearables, in-building sensors and smart electricity metering. It has the potential to improve cities’ safety, industrial productivity and enhance human health and welfare. Each area has its own characteristics in terms of connectivity, management, platform and security requirements.

This briefing report focuses on “narrowband”, long-distance IoT connectivity – typically applications which operate at speeds of 1Mbit/s or less, and perhaps only transmit a few kilobytes per day. That contrasts with the high-speed, low-latency connections IoT connections that people reference for wearables like AR headsets, or those streaming real-time telemetry and cloud-access, from complex devices like robots or huge arrays of sensors.

It is frequently said that connectivity represents only a small percentage of the overall revenue and value opportunity around IoT. Yet while that is, objectively, true, it ignores the anchoring and potential “pull-through” on other layers, especially for LPWA and narrowband access, where optimisation for power consumption and coverage is critical for many use-cases. Provision of connectivity to a device or application gives the provider (or owner) a head-start on exploiting the entire solution stack, for example in terms of collection of operational data for machine-learning and analytics.

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

Against that backdrop, it is understandable why telcos and their vendors and industry bodies are putting so much attention on IoT-centric networking. That encompasses everything from 5G headline use-cases about ultra-low latency connections, through to the desire to manage smart homes and cities’ infrastructure, or very simple sensors.

It is already clear that no one single technology – or even two or three – can cover everything to do with IoT. There are too many dimensions – between 5 and 10 important ones can be identified (see page 19 of the report) – which leads to a vast set of combinations. No vendor, and no operator, will be able to optimally cover everything, while for any given problem there is likely to be an overlap of “reasonable” solutions.

An important part of the mix, which STL Partners has considered before in 2016 is for low-power, wide-area LPWA connectivity. This is envisaged to connect many of the “billions” of endpoints which are widely anticipated – inexpensive sensors, actuators, personal devices, tags and other gadgets – and especially those spread over large distances (think 100s of metres, up to 10s of kilometres or more).

Typical LPWA / narrowband applications

In particular, LPWA focuses on low-bandwidth products, rather than those needing enough speed for video or rich telemetry to/from the cloud. Most, but not all, LPWA applications are fairly tolerant of delay/latency – temperature sensors or street-lights don’t need millisecond response times – but security may still be very important.

They need to be simple to deploy, inexpensive, energy-efficient, low-maintenance and use radio technology suitable for hard-to-reach locations. Most of the new LPWA networks can connect many end devices via a single base station, usually over a long (1-10km) distance. This brings trade-offs, however: slower data transmission rates and less-frequent updates/messages.

  • New cycle-sharing services, where the bikes don’t need special racks, but have remote-controlled padlocks and can be left/picked-up (and tracked) anywhere in an urban area.
  • Smart electricity/gas meters for homes – which may be in basements, or wherever the pipes/wires enter the building.
  • Asset-tracking, such as attaching beacons to expensive tools on large sites.
  • Smart lighting systems for cities, where lamp-posts can be switched on remotely – but also house sensors (e.g. for weather or traffic) which report back data to a central system.
  • Supply-chain management, such as monitoring of shipments of pharmaceuticals from manufacture to dispensary.

Shared bicycles’ locks have requirements for mobility & long battery life

LPWA applications

Key LPWA technologies & deployments

There are currently four main LPWA technologies that dominate IoT deployments and discussion: SigFox, LoRaWAN, NB-IoT and LTE-M (sometimes called LTE Cat-M1). There are also a number of other less-prominent solutions, which can be important for certain niches. Various hybrids and combinations are possible as well – plus many short-range solutions like Wi-Fi, ZigBee and Bluetooth, which are outside the main scope of discussion here.

The main four include two that are endorsed by the mobile industry “establishment”, as they are 3GPP standards that fit into the broader 4G family. In most cases, they are intended to work in dedicated (licensed) spectrum bands, typical for most mobile networks. The cellular LPWA variants include:

LTE-M: This is essentially a de-tuned, cheaper, lower-power version of “normal” LTE. It can also support VoLTE voice communications. It is focused on mid-range speeds of up to 1Mbit/s. An earlier version of LTE designed for M2M was called LTE-Cat1, although it is not in widespread use.

NB-IoT: This is 3GPP’s first attempt at an ultra-low power, long battery-life standard. The NB stands for Narrowband, meaning below 100kbit/s data speeds, and often considerably less than that. This means can fit into quite small slices of spectrum.

EC-GSM: As well LTE-M and NB-IoT, 3GPP is also working on a more-modern version of 2G connectivity, especially suitable for countries or rural regions which do not yet have 4G coverage, yet need an improved version of GPRS M2M, for low-power applications like agriculture. It has had little traction so far.

5G “Massive” MTC: One of the main promised use-cases of 5G networks is for ultra-dense, low- power IoT networks – potentially tens of thousands of nodes per cell, or even more. This is commonly referred to as “massive IoT” or MTC (machine-type communications). While there may be evolution of NB-IoT towards that (e.g. NB-IoT2), the full 5G version is only likely to emerge in 2020 or beyond.

Outside of the “mainstream” cellular-industry IoT connectivity technologies created by 3GPP, there is a wide variety of other options. Some of these have been created by individual vendors which retain core rights to the IPR, while others have been standardised by other IT/networking bodies such as IEEE. Mostly, they work in unlicensed spectrum – which makes them cheaper to deploy (especially in limited areas), but risks interference.

Table of Contents

  • Executive Summary
  • Introduction: Why is LPWA important?
  • Typical LPWA / narrowband applications
  • Key LPWA technologies & deployment
  • Status and deployments
  • LoRa / LoRaWAN
  • SigFox
  • Strategic considerations
  • Multiple dimensions determine the “best” LPWA for each use
  • LPWA delivery models: Service, private, solution or other?
  • Spectrum considerations
  • IoT developers and ecosystem
  • Hybrid and multiple networks
  • Conclusions and recommendations
  • Vertical solutions?
  • Conclusions

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

Telcos and GAFA: Dancing with the disruptors

Introduction

Across much of the world, the competing Internet ecosystems led by Amazon, Apple, Facebook and Google have come to dominate the consumer market for digital services. Even though most telcos continue to compete with these players in the service layer, it is now almost a necessity for operators to partner with one or more of these ecosystems in some shape or form.

This report begins by pinpointing the areas where telcos are most likely to partner with these players, drawing on examples as appropriate. In each case, it considers the nature of the partnership and the resulting value to the telco and to the Internet ecosystem. It also considers the longer-term, strategic implications of these partnerships and makes recommendations on how telcos can try to strengthen their negotiating position.

This research builds on the findings of the Digital Partnerships Benchmarking Study conducted between 26th September and 4th November 2016 by STL Partners and sponsored by AsiaInfo. That study involved a survey of 34 operators in Europe and Asia Pacific. It revealed that whereas almost all operators expected to grow their partnerships business in the future, they differed on how they expected to pursue this growth.

Approximately half (46%) of the operator respondents wanted to scale up and partner with a large number of digital players, while the other half (49%) wanted to focus in on a few strategic partnerships.  Those looking to partner with a large number of companies were primarily interested in generating new revenue streams or increasing customer relevance, while many of those who wanted to focus on a small number of partnerships also regarded increasing revenues from the core business as a main objective (see Figure 1).

Figure 1: The business objectives differ somewhat by partnership strategy

Source: Digital Partnerships Benchmarking Study conducted in late 2016 by STL Partners and sponsored by AsiaInfo

Respondents were also asked to rank the assets that an operator can bring to a partnership, both today and in the future. These ranks were converted into a normalized score (see Figure 2): A score of 100% in Figure 2 would indicate that all respondents placed that option in the top rank.

Figure 2: Operators regard their customer base as their biggest asset

Source: Digital Partnerships Benchmarking Study conducted in late 2016 by STL Partners and sponsored by AsiaInfo

Clearly, operators are aware that the size of their customer base is a significant asset, and they are optimistic that it is likely to remain so: it is overall the highest scoring asset both today and in the future.

In the future, the options around customer data (customer profiling, analytics and insights) are given higher scores (they move up the ranks). This suggests that operators believe that they will become better at exploiting their data-centric assets and – most significantly – that they will be able to monetize this in partnerships, and that these data-centric assets will have significant value.

The findings of the study confirm that most telcos believe they can bring significant and valuable assets to partnerships. This report considers how those assets can be used to strike mutually beneficial deals with the major Internet ecosystems. The next chapter explains why telcos and the leading Internet players need to co-operate with each other, despite their competition for consumers’ attention.

Contents:

  • Executive Summary
  • Strategic considerations
  • Delivering bigger, better entertainment
  • Improving customer experience
  • Extending and enhancing connectivity
  • Developing the networks of the future
  • Delivering cloud computing to enterprises
  • Introduction
  • Telcos and lnternet giants need each other
  • Delivering bigger, better entertainment
  • Content delivery networks
  • Bundling content and connectivity
  • Zero-rating content
  • Carrier billing
  • Content promotion
  • Apple and EE in harmony
  • Value exchange and takeaways
  • Improving the customer experience
  • Making mobile data stretch further
  • Off-peak downloads, offline viewing
  • Data plan awareness for apps
  • Fine-grained control for consumers
  • Value exchange and takeaways
  • Extending and enhancing connectivity
  • Subsea cable consortiums
  • Free public Wi-Fi services
  • MVNO Project Fi – branded by Google, enabled by telcos
  • Value exchange and takeaways
  • Developing the networks of the future
  • Software-defined networks: Google and the CORD project
  • Opening up network hardware: Facebook’s Telecom Infra Project
  • Value exchange and takeaways
  • Delivering cloud computing to enterprises
  • Reselling cloud-based apps
  • Secure cloud computing – AWS and AT&T join forces
  • Value exchange and takeaways
  • Conclusions and Recommendations
  • Google is top of mind
  • Whose brand benefits?

Figures:

  • Figure 1: The business objectives differ somewhat by partnership strategy
  • Figure 2: Operators regard their customer base as their biggest asset
  • Figure 3: US Internet giants generate about 40% of mobile traffic in Asia-Pacific
  • Figure 4: Google and Facebook are now major players in mobile in Africa
  • Figure 5: Examples of telco-Internet platform partnerships in entertainment
  • Figure 6: BT Sport uses YouTube to promote its premium content
  • Figure 7: Apple Music appears to have helped EE’s performance
  • Figure 8: Amazon is challenging Apple and Spotify in the global music market
  • Figure 9: Examples of telco-Google co-operation around transparency
  • Figure 10: YouTube Smart Offline could alleviate peak pressure on networks
  • Figure 11: Google’s Triangle app gives consumers fine-grained control over apps
  • Figure 12: Examples of telco-Internet platform partnerships to deliver connectivity
  • Figure 13: Project Fi’s operator partners provide extensive 4G coverage
  • Figure 14: Both T-Mobile US and Sprint need to improve their financial returns
  • Figure 15: Examples of telco-Internet platform partnerships on network innovation
  • Figure 16: AWS has a big lead in the cloud computing market
  • Figure 17: Examples of telco-Internet platform partnerships in enterprise cloud
  • Figure 18: AT&T provides private and secure connectivity to public clouds
  • Figure 19: Amazon and Alphabet lead corporate America in R&D
  • Figure 20: Telcos need to be wary of bolstering already powerful brands
  • Figure 21: Balancing immediate value of partnerships against strategic implications
  • Figure 22: Different telcos should adopt different strategies

The Internet of Things (IoT): What’s Hot, and How?

Summary: ‘The Internet of Things’ (IoT) is one of the big ideas of the moment. But what are the areas in which value is being created now, and what is still technological hype? A summary of the findings of the Digital Things session at the 2013 Silicon Valley Brainstorm. (April 2013)

Building Blocks Urgently Needed for IoT April 2013

  Read in Full (Members only)   To Subscribe click here

Below are the high-level analysis and detailed contents from a 47 page Telco 2.0 Briefing Report that can be downloaded in full in PDF format by members of the Telco 2.0 Executive Briefing service here. The Internet of Things will also be explored further at the EMEA Executive Brainstorm in London, 5-6 June, 2013, and we also run dedicated IoT Strategy Workshops. Non-members can find out more about subscriptions here or to find out more about any of these services, please email contact@telco2.net or call +44 (0) 207 247 5003.

To share this article easily, please click:

 



Introduction

Part of the New Digital Economics Executive Brainstorm series, the 19th Telco 2.0 event took place at the InterContinental Hotel in San Francisco on the 19th and 20th of March, 2013. This report covers the Digital Things track on the second day, which was developed in partnership between STL Partners and Beecham Research.

Analysis: What’s Hot in the IoT?

‘The Internet of Things’ (IoT) or ‘The Internet of Everything’ is one of the big ideas of the moment. But how much is technological hype and how much is value-creating reality?

Its close relative and precursor ‘Machine-To-Machine’ (M2M) had until relatively recently evolved as a telco-centric concept. Unlike the personality, publicity and hype driven world of smartphones and the Internet, M2M has been deeply embedded in industry processes, and generally siloed in industry verticals. ‘Industrial M2M’ is not going away: indeed it’s gathering pace and taking on new directions.

But recently the idea of ‘The Internet of Things’ has become something of a meme. It is certainly a hot topic amongst Silicon Valley technologists and investors, and this was reflected in the enthusiasm shown by the participants at our Executive Brainstorm in March 2013.

Definitions of the IoT vs. M2M are not yet standardised, although some of the common themes that are emerging are that the IoT is frequently cited as:

  • More consumer-oriented than M2M. IoT is often B2B2C, and with the second ‘B’ sometimes meaning ‘Government’;
  • Dependent on cross-application data (data generated by or for one application being repurposed for another);
  • More like the Web – discoverable, ‘mashable’, self-registering… with all the potential hazards associated with the Web;
  • Bringing added value through revenue growth and/or enhanced customer experiences as well as reduced costs.

Some of the wider excitement has also been underpinned by futuristic predictions of 50bn connected devices, an idea which appeals to chip manufacturers, vendors, and telcos alike as they seek new avenues of growth. However, the questions of ‘but what will they be used for, why, and who will pay for it?’ have to date stood their ground, mostly unanswered.

Economic necessity: the mother of innovation

Now, though, a combination of pressing economic necessities, improving economics of delivery, and increasing technical capabilities is forcing these questions up the agenda. In the North American market, the areas that are progressing fastest have clear economic rationales:

  • In US healthcare, which spends 17% of GDP on health and accounts for 47% of the world’s total healthcare spending) there is the urgent need to make healthcare more efficient before it literally bankrupts the economy;
  • In the automotive industry, car makers desperately need new sources of differentiation and revenues (from in-life servicing) to survive, and this is driving widespread innovation;
  • In heavy Industries, it is estimated that a 1% improvement in productivity equals a 20-30% improvement in profitability, so there are clear incentives in what GE CEO Jeffrey Immelt calls the “Industrial Internet” too.

New blocks means new enablers are needed

With new opportunities come new challenges, and one of the biggest new challenges, arising from healthcare applications in particular, is how to manage the complexities of collecting, transmitting, storing and analysing highly personal and personalised health data safely, securely, and legitimately. The safety-critical control systems of the “Industrial Internet” are no less sensitive.

Evidently, effective security and trust networks are urgently required if the IoT’s potential is to be achieved, as the following chart shows.

Building Blocks Urgently Needed for IoT April 2013

In a world where people (and also jet engines) are having their health monitored automatically by numerous connected sensors, a lot of data is being amassed and needs to be monitored and analysed. Hence ‘Big Data’ is also a closely related topic to the IoT.

Hope, spectacle and speculation

There are several other areas that are sometimes included under the banner of the ‘IoT’, for example:

  • Clothing / ‘wearables’ – this covers a rapidly developing set of application areas, enabling technologies and related devices, including as Google Glass, Pebble Watch, Nike Fuel band and Adidas connected shoes.
  • Connected Media. There is a growing field of experimentation into and practice with connected signage that can show different messages and adverts, etc.
  • Experiments connecting virtually anything. Someone, somewhere is experimenting with a connected version of almost every object available. As just one example, in the Silicon Valley session, Centurylink said that they had asked school children to brainstorm what might be connected and why, and examples the students came up with included a connected tooth that senses the amount of sugar eaten. Another example, launched as a final product at CES, is the connected fork.
  • Tracking items. An example was given of the idea that many objects, including say a pothole in the road, could be given an identity and tracked thereafter so the fact that the pothole had been reported, and that work was scheduled, could be reviewed by anyone. Related ideas of the usefulness of being able to track goods of one sort or another, from understanding the road-miles of recycling individual objects through to tracking the whereabouts of virtually any object, have also been discussed.

There may indeed be opportunities in many of these areas, but the pressing economic, practical or social needs are not yet clear.

It is also not clear whether the definition of the ‘Internet of Things’ encompasses all of these ideas – although at present it would seem that anything that can be covered by this idea will be in someone’s world view.

What is clear is that the pace and diversity is increasing, and that new areas will continue to cross over from experiment to trial to mainstream development.

Next steps for STL Partners

We will continue to research and explore the ‘Internet of Things’ at our Executive Brainstorms, with particular emphasis on the areas that are most likely to ‘flip over’ from speculation to application.

We will also look further into the needs and applications of ‘Big Data’ into the field, as well as continuing our involvement in the World Economic Forum’s (WEF) work on Trust Networks for personal data.

To read the note in full, including the following sections detailing additional analysis…

  • Session 1: Market Evolution towards Internet of Things – Strategies and Business Models
  • Stimulus presentations
  • Voting, feedback, discussions
  • Brainstorm Output: IoT Opportunities
  • Session 2: IOT Platform Requirements
  • Stimulus Speakers and Panellists
  • Stimulus presentations
  • Voting, feedback, and discussions
  • Brainstorm: building blocks for IoT
  • Panel Discussion
  • Session 3: Big Data – Exploiting the New Oil for the New Economy
  • Stimulus Speakers and Panellists
  • Stimulus presentations
  • Voting, feedback, discussions

…and the following figures…

  • Figure 1 – Key considerations in M2M projects
  • Figure 2 – Vendor priorities in M2M/IoT
  • Figure 3 – From “M2M Now” to “Industrial Internet” and “IoT”
  • Figure 4 – The future M2M value chain
  • Figure 5 – Connected device growth forecast
  • Figure 6 – SmartThings.com
  • Figure 7 – M2M 1.0 = “save money”, M2M 2.0 = “make money”
  • Figure 8 – The Gap – What Else is Out There?
  • Figure 9 – Focus areas for M2M initiatives
  • Figure 10 – Focus areas in the M2M value chain
  • Figure 11 – The key questions in IoT
  • Figure 12 – Elements of IoT
  • Figure 13 – The challenges – power, IPv6, and privacy
  • Figure 14 – The US is enormous, but also very unusual
  • Figure 15 – Health – the ultimate channel business
  • Figure 16 – What is the scale of the IoT opportunity?
  • Figure 17 – IoT: what type of business models?
  • Figure 18 – Panasonic’s innovation priorities
  • Figure 19 – Panasonic’s new businesses in the US
  • Figure 20 – “Content mobility” is crucial to the connected car
  • Figure 21 – Cisco – focus on the industrial potential of IoT
  • Figure 22 – How this relates to service providers
  • Figure 23 – Which technical building blocks are most needed?
  • Figure 24 – Which business infrastructure components are most needed?
  • Figure 25 – Why personal data isn’t like oil
  • Figure 26 – A strawman process for personal data
  • Figure 27 – A decentralised architecture for the Internet of My Things
  • Figure 28 – Kynetx: companies can connect through ‘things’

Members of the Telco 2.0 Executive Briefing Subscription Service can download the full 47 page report in PDF format here. Non-Members, please subscribe here. The Internet of Things will also be explored in depth at the EMEA Executive Brainstorm in London, 5-6 June, 2013. For this or any other enquiries, please email contact@telco2.net / call +44 (0) 207 247 5003.

Background & Further Information

Produced and facilitated by business innovation firm STL Partners, the 2013 Silicon Valley event overall brought together 150 specially-invited senior executives from across the communications, media, retail, banking and technology sectors, including:

  • Apigee, Arete Research, AT&T,ATG, Bain & Co, Beecham Research, Blend Digital Group, Bloomberg, Blumberg Capital, BMW, Brandforce, Buongiorno, Cablelabs, CenturyLink, Cisco, CITI Group, Concours Ventures, Cordys, Cox Communications, Cox Mobile, CSG International, Cycle Gear, Discovery, DoSomething.Org, Electronic Transactions Association, EMC Corporation, Epic, Ericsson, Experian, Fraun Hofer USA, GE, GI Partners, Group M, GSMA, Hawaiian Telecom, Huge Inc, IBM, ILS Technology, IMI Mobile Europe, Insight Enterprises, Intel, Ketchum Digital, Kore Telematics, Kynetx, MADE Holdings, MAGNA Global, Merchant Advisory Group, Message Systems, Microsoft, Milestone Group, Mimecast, MIT Media Lab, Motorola, MTV, Nagra, Nokia, Oracle, Orange, Panasonic, Placecast, Qualcomm, Rainmaker Capital, ReinCloud, Reputation.com, SalesForce, Samsung, SAP, Sasktel, Searls Group, Sesame Communications, SK Telecom Americas, Sprint, Steadfast Financial, STL Partners/Telco 2.0, SystemicLogic Ltd., Telephone & Data Systems, Telus, The Weather Channel, TheFind Inc, T-Mobile USA, Trujillo Group LLC, UnboundID, University of California Davis, US Cellular Corp, USC Entertainment Technology Center, Verizon, Virtustream, Visa, Vodafone, Wavefront, WindRiver, Xtreme Labs.

Around 50 of these executives participated in the ‘Internet of Things’ session.

The Brainstorm used STL’s unique ‘Mindshare’ interactive format, including cutting-edge new research, case studies, use cases and a showcase of innovators, structured small group discussion on round-tables, panel debates and instant voting using on-site collaborative technology.

We’d like to thank the sponsors of the Brainstorm:
Silicon Valley 2013 Sponsors

Dealing with the ‘Disruptors’: Google, Apple, Facebook, Microsoft/Skype and Amazon (Updated Extract)

Executive Summary (Extract)

This report analyses the strategies behind the success of Amazon, Apple, Facebook, Google and Skype, before going on to consider the key risks they face and how telcos and their partners should deal with these highly-disruptive Internet giants.

As the global economy increasingly goes digital, these five companies are using the Internet to create global brands with much broader followings than those of the traditional telecoms elite, such as Vodafone, AT&T and Nokia. However, the five have markedly different business models that offer important insights into how to create world-beating companies in the digital economy:

  • Amazon: Amazon’s business-to-business Marketplace and Cloud offerings are text-book examples of how to repurpose assets and infrastructure developed to serve consumers to open up new upstream markets. As the digital economy goes mobile, Amazon’s highly-efficient two-sided commerce platform is enabling it to compete effectively with rivals that control the leading smartphone and tablet platforms – Apple and Google.
  • Apple: Apple has demonstrated that, with enough vision and staying power, an individual company can single-handedly build an entire ecosystem. By combining intuitive and very desirable products, with a highly-standardised platform for software developers, Apple has managed to create an overall customer experience that is significantly better than that offered by more open ecosystems. But Apple’s strategy depends heavily on it continuing to produce the very best devices on the market, which will be difficult to sustain over the long-term.
  • Facebook: A compelling example of how to build a business on network effects. It took Facebook four years of hard work to reach a tipping point of 100 million users, but the social networking service has been growing easily and rapidly ever since. Facebook has the potential to attract 1.4 billion users worldwide, but only if it continues to sidestep rising privacy concerns, consumer fatigue or a sudden shift to a more fashionable service.
  • Google: The search giant’s virtuous circle keeps on spinning to great effect – Google develops scores of free, and often-compelling, Internet services, software platforms and apps, which attract consumers and advertisers, enabling it to create yet more free services. But Google’s acquisition of Motorola Mobility risks destabilising the Android ecosystem on which a big chunk of its future growth depends.
  • Skype: Like Facebook and Google, Skype sought users first and revenues second. By creating a low-cost, yet feature-rich, product, Skype has attracted more than 660 million users and created sufficient strategic value to persuade Microsoft to hand over $8.5bn. Skype’s share of telephony traffic is rising inexorably, but Google and Apple may go to great lengths to prevent a Microsoft asset gaining a dominant position in peer-to-peer communications.

The strategic challenge

There is a clear and growing risk that consumers’ fixation on the products and services provided by the five leading disruptors could leave telcos providing commoditised connectivity and struggling to make a respectable return on their massive investment in network infrastructure and spectrum.

In developed countries, telcos’ longstanding cash-cows – mobile voice calls and SMS – are already being undermined by Internet-based alternatives offered by Skype, Google, Facebook and others. Competition from these services could see telcos lose as much as one third of their messaging and voice revenues within five years (see Figure 1) based on projections from our global survey, carried out in September 2011.

Figure 1 – The potential combined impact of the disruptors on telcos’ core services

Impact of Google, Apple, Facebook, Microsoft/Skype, Amaxon on telco services

Source: Telco 2.0 online survey, September 2011, 301 respondents

Moreover, most individual telcos lack the scale and the software savvy to compete effectively in other key emerging mobile Internet segments, such as local search, location-based services, digital content, apps distribution/retailing and social-networking.

The challenge for telecoms and media companies is to figure out how to deal with the Internet giants in a strategic manner that both protects their core revenues and enables them to expand into new markets. Realistically, that means a complex, and sometimes nuanced, co-opetition strategy, which we characterise as the “Great Game”.

In Figure 3 below, we’ve mapped the players’ roles and objectives against the markets they operate in, giving an indication of the potential market revenue at stake, and telcos’ generic strategies.

Figure 3- The Great Game – Positions, Roles and Strategies

The Great Game - Telcos, Amazon, Apple, Google, Facebook, Skype/Microsoft

Our in-depth analysis, presented in this report, describes the ‘Great Game’ and the strategies that we recommend telcos and others can adopt in summary and in detail. [END OF FIRST EXTRACT]

Report contents

  • Executive Summary [5 pages – including partial extract above]
  • Key Recommendations for telcos and others [20 pages]
  • Introduction [10 pages – including further extract below]


The report then contains c.50 page sections with detailed analysis of objectives, business model, strategy, and options for co-opetition for:

  • Google
  • Apple
  • Facebook
  • Microsoft/Skype
  • Amazon

Followed by:

  • Conclusions and recommendations [10 pages]
  • Index

The report includes 124 charts and tables.

The rest of this page comprises an extract from the report’s introduction, covering the ‘new world order’, investor views, the impact of disruptors on telcos, and how telcos are currently fighting back (including pricing, RCS and WAC), and further details of the report’s contents. 

 

Introduction

The new world order

The onward march of the Internet into daily life, aided and abetted by the phenomenal demand for smartphones since the launch of the first iPhone in 2007, has created a new world order in the telecoms, media and technology (TMT) industry.

Apple, Google and Facebook are making their way to the top of that order, pushing aside some of the world’s biggest telcos, equipment makers and media companies. This trio, together with Amazon and Skype (soon to be a unit of Microsoft), are fundamentally changing consumers’ behaviour and dismantling longstanding TMT value chains, while opening up new markets and building new ecosystems.

Supported by hundreds of thousands of software developers, Apple, Google and Facebook’s platforms are fuelling innovation in consumer and, increasingly, business services on both the fixed and mobile Internet. Amazon has set the benchmark for online retailing and cloud computing services, while Skype is reinventing telephony, using IP technology to provide compelling new functionality and features, as well as low-cost calls.

On their current trajectory, these five companies are set to suck much of the value out of the telecoms services market, substituting relatively expensive and traditional voice and messaging services with low-cost, feature-rich alternatives and leaving telcos simply providing data connectivity. At the same time, Apple, Amazon, Google and Facebook have become major conduits for software applications, games, music and other digital content, rewriting the rules of engagement for the media industry.

In a Telco2.0 online survey of industry executives conducted in September 2011, respondents said they expect Apple, Google, Facebook and Skype together to have a major impact on telcos’ voice and messaging revenues in the next three to five years . Although these declines will be partially compensated for by rising revenues from mobile data services, the respondents in the survey anticipate that telcos will see a major rise in data carriage costs (see Figure 1 – The potential combined impact of the disruptors on telcos’ core services).

In essence, we consider Amazon, Apple, Facebook, Google and Skype-Microsoft to be the most disruptive players in the TMT ecosystem right now and, to keep this report manageable, we have focused on these five giants. Still, we acknowledge that other companies, such as RIM, Twitter and Baidu, are also shaping consumers’ online behaviour and we will cover these players in more depth in future research.

The Internet is, of course, evolving rapidly and we fully expect new disruptors to emerge, taking advantage of the so-called Social, Local, Mobile (SoLoMo) forces, sweeping through the TMT landscape. At the same time, the big five will surely disrupt each other. Google is increasingly in head-to-head competition with Facebook, as well as Microsoft, in the online advertising market, while squaring up to Apple and Microsoft in the smartphone platform segment. In the digital entertainment space, Amazon and Google are trying to challenge Apple’s supremacy, while also attacking the cloud services market.

Investor trust

Unlike telcos, the disruptors are generally growing quickly and are under little, or no, pressure from shareholders to pay dividends. That means they can accumulate large war chests and reinvest their profits in new staff, R&D, more data centres and acquisitions without any major constraints. Investors’ confidence and trust enables the disruptors to spend money freely, keep innovating and outflank dividend-paying telcos, media companies and telecoms equipment suppliers.

By contrast, investors generally don’t expect telcos to reinvest all their profits in their businesses, as they don’t believe telcos can earn a sufficiently high return on capital. Figure 16 shows the dividend yields of the leading telcos (marked in blue). Of the disruptors, only Microsoft (marked in green) pays a dividend to shareholders.

Figure 16: Investors expect dividends, not growth, from telcos

Figure 1 Chart Google Apple Facebook Microsoft Skype Amazon Sep 2011 Telco 2.0

Source: Google Finance 2/9/2011

The top telcos’ turnover and net income is comparable, or superior, to that of the leading disruptors, but this isn’t reflected in their respective market capitalisations. AT&T’s turnover is approximately four times that of Google and its net income twice as great, yet their market cap is similar. Even accounting for their different capital structures, investors clearly expect Google to grow much faster than AT&T and syphon off more of the value in the TMT sector.

More broadly, the disparity in the market value between the leading disruptors and the leading telcos’ market capitalisations suggest that investors expect Apple, Microsoft and Google’s revenues and profits to keep rising, while they believe telcos’ will be stable or go into decline. Figure 17 shows how the market capitalisation of the disruptors (marked in green) compares with that of the most valuable telcos (marked in blue) at the beginning of September 2011.

Figure 17: Investors value the disruptors highly

Figure 2 Chart Google Apple Facebook Microsoft Skype Amazon Market Capitalisation Sep 2011 Telco 2.0

Source: Google Finance 2/9/2011 (Facebook valued at Facebook $66bn based on IPG sale in August 2011)

Impact of disruptors on telcos

It has taken longer than many commentators expected, but Internet-based messaging and social networking services are finally eroding telcos’ SMS revenues in developed markets. KPN, for example, has admitted that smartphones, equipped with data communications apps (and Whatsapp in particular), are impacting its voice and SMS revenues in its consumer wireless business in its home market of The Netherlands (see Figure 18). Reporting its Q2 2011 results, KPN said that changing consumer behaviour cut its consumer wireless service revenues in Holland by 2% year-on-year.

Figure 18: KPN reveals falling SMS usage

Figure 3 Chart Google Apple Facebook Microsoft Skype Amazon KPN Trends Sep 2011 Telco 2.0

Source: KPN Q2 results

In the second quarter, Vodafone also reported a fall in messaging revenue in Spain and southern Africa, while Orange saw its average revenue per user from data and SMS services fall in Poland.

How telcos are fighting back

Big bundles

Carefully-designed bundles are the most common tactic telcos are using to try and protect their voice and messaging business. Most postpaid monthly contracts now come with hundreds of SMS messages and voice minutes, along with a limited volume of data, bundled into the overall tariff package. This mix encourages consumers to keep using the telcos’ voice and SMS services, which they are paying for anyway, rather than having Skype or another VOIP service soak up their precious data allowance.

To further deter usage of VOIP services, KPN and some other telcos are also creating tiered data tariffs offering different throughput speeds. The lower-priced tariffs tend to have slow uplink speeds, making them unsuitable for VOIP (see Figure 19 below). If consumers want to use VOIP, they will need to purchase a higher-priced data tariff, earning the telco back the lost voice revenue.

Figure 19: How KPN is trying to defend its revenues

Figure 4 Chart Google Apple Facebook Microsoft Skype Amazon KPN Defence Sep 2011 Telco 2.0

Source: KPN’s Q2 results presentation

Of course, such tactics can be undermined by competition – if one mobile operator in a market begins offering generous data-only tariffs, consumers may well gravitate towards that operator, forcing the others to adjust their tariff plans.

Moreover, bundling voice, SMS and data will generally only work for contract customers. Prepaid customers, who only want to pay for what they are use, are naturally charged for each minute of calls they make and each message they send. These customers, therefore, have a stronger financial incentive to find a free WiFi network and use that to send messages via Facebook or make calls via Skype.

The Rich Communications Suite (RCS)

To fend off the threat posed by Skype, Facebook, Google and Apple’s multimedia communications services, telcos are also trying to improve their own voice and messaging offerings. Overseen by mobile operator trade association the GSMA, the Rich Communications Suite is a set of standards and protocols designed to enable mobile phones to exchange presence information, instant messages, live video footage and files across any mobile network.

In an echo of social networks, the GSMA says RCS will enable consumers to create their own personal community and share content in real time using their mobile device.

From a technical perspective, RCS uses the Session Initiation Protocol (SIP) to manage presence information and relay real-time information to the consumer about which service features they can use with a specific contact. The actual RCS services are carried over an IP-Multimedia Subsystem (IMS), which telcos are using to support a shift to all-IP fixed and mobile networks.

Deutsche Telekom, Orange, Telecom Italia, Telefonica and Vodafone have publically committed to deploy RCS services, indicating that the concept has momentum in Europe, in particular. The GSMA says that interoperable RCS services will initially be launched by these operators in Spain, Germany, France and Italy in late 2011 and 2012. [NB We’ll be discussing RCSe with some of the operators at our EMEA event in London in November 2011.]

In theory, at least, RCS will have some advantages over many of the communications services offered by the disruptors. Firstly, it will be interoperable across networks, so you’ll be able to reach people using different service providers. Secondly, the GSMA says RCS service features will be automatically available on mobile devices from late 2011 without the need to download and install software or create an account (by contrast, Apple’s iMessage service, for example, will only be installed on Apple devices).

But questions remain over whether RCS devices will arrive in commercial quantities fast enough, whether RCS services will be priced in an attractive way and will be packaged and marketed effectively. Moreover, it isn’t yet clear whether IMS will be able to handle the huge signalling load that would arise from widespread usage of RCS.

Internet messaging protocols, such as XMPP, require the data channel to remain active continuously. Tearing down and reconnecting generates lots of signalling traffic, but the alternative – maintaining a packet data session – will quickly drain the device’s battery.
By 2012, Facebook and Skype may be even more entrenched than they are today and their fans may see no need to use telcos’ RCS services.

Competing head-on

Some of the largest mobile operators have tried, and mostly failed, to take on the disruptors at their own game. Vodafone 360, for example, was Vodafone’s much-promoted, but ultimately, unsuccessful €500 million attempt to insert itself between its customers and social networking and messaging services from the likes of Facebook, Windows Live, Google and Twitter.

As well as aggregating contacts and feeds from several social networks, Vodafone 360 also served as a gateway to the telco’s app and music store. But most Vodafone customers didn’t appear to see the need to have an aggregator sit between them and their Facebook feed. During 2011, the service was stripped back to be just the app and music store. In essence, Vodafone 360 didn’t add enough value to what the disruptors are already offering. We understand, from discussions with executives at Vodafone, that the service is now being mothballed.

A small number of large telcos, mostly in emerging markets where smartphones are not yet commonplace, have successfully built up a portfolio of value-added consumer services that go far beyond voice and messaging. One of the best examples is China Mobile, which claims more than 82 million users for its Fetion instant messaging service, for example (see Figure 20 – China Mobile’s Internet Services).

Figure 20 – China Mobile’s Internet Services

China Mobile Services, Google, Apple, Facebook Report, Telco 2.0

Source: China Mobile’s Q2 2011 results

However, it remains to be seen whether China Mobile will be able to continue to attract so many customers for its (mostly paid-for) Internet services once smartphones with full web access go mass-market in China, making it easier for consumers to access third-parties’ services, such as the popular QQ social network.

Some telcos have tried to compete with the disruptors by buying innovative start-ups. A good example is Telefonica’s acquisition of VOIP provider Jajah for US$207 million in January 2010. Telefonica has since used Jajah’s systems and expertise to launch low-cost international calling services in competition with Skype and companies offering calling cards. Telefonica expects Jajah’s products to generate $280 million of revenue in 2011, primarily from low-cost international calls offered by its German and UK mobile businesses, according to a report in the FT.

The Wholesale Applications Community (WAC)

Concerned about their growing dependence on the leading smartphone platforms, such as Android and Apple’s iOS, many of the world’s leading telcos have banded together to form the Wholesale Applications Community (WAC).

WAC’s goal is to create a platform developers can use to create apps that will run across different device operating systems, while tapping the capabilities of telcos’ networks and messaging and billing systems.

At the Mobile World Congress in February 2011, WAC said that China Mobile, MTS, Orange, Smart, Telefónica, Telenor, Verizon and Vodafone are “connected to the WAC platform”, while adding that Samsung and LG will ensure “that all devices produced by the two companies that are capable of supporting the WAC runtime will do so.”

It also announced the availability of the WAC 2.0 specification, which supports HTML5 web applications, while WAC 3.0, which is designed to enable developers to tap network assets, such as in-app billing and user authentication, is scheduled to be available in September 2011.

Ericsson, the leading supplier of mobile networks, is a particularly active supporter of WAC, which also counts leading Alcatel-Lucent, Huawei, LG Electronics, Qualcomm, Research in Motion, Samsung and ZTE, among its members.

In theory, at least, apps developers should also throw their weight behind WAC, which promises the so far unrealised dream of “write once, run anywhere.” But, in reality, games developers, in particular, will probably still want to build specific apps for specific platforms, to give their software a performance and functionality edge over rivals.

Still, the ultimate success or failure of WAC will likely depend on how enthusiastically Apple and Google, in particular, embrace HTML5 and actively support it in their respective smartphone platforms. We discuss this question further in the Apple and Google chapters of this report.

Summarising current telcos’ response to disruptors

 

Telcos, and their close allies in the equipment market, are clearly alert to the threat posed by the major disruptors, but they have yet to develop a comprehensive game plan that will enable them to protect their voice and messaging revenue, while expanding into new markets.

Collective activities, such as RCS and WAC, are certainly necessary and worthwhile, but are not enough. Telcos, and companies across the broader TMT ecosystem, need to also adapt their individual strategies to the rise of Amazon, Apple, Facebook, Google and Skype-Microsoft. This report is designed to help them do that.

[END OF EXTRACT]