Telco digital twins: Cool tech or real value?

Definition of a digital twin

Digital twin is a familiar term with a well-known definition in industrial settings. However, in a telco setting it is useful to define what it is and how it differs from a standard piece of modelling. This research discusses the definition of a digital twin and concludes with a detailed taxonomy.

An archetypical digital twin:

  • models a single entity/system (for example, a cell site).
  • creates a digital representation of this entity/system, which can be either a physical object, process, organisation, person or abstraction (details of the cell-site topology or the part numbers of components that make up the site).
  • has exactly one twin per thing (each cell site can be modelled separately).
  • updates (either continuously, intermittently or as needed) to mirror the current state of this thing. For example, the cell sitescurrent performance given customer behavior.

In addition:

  • multiple digital twins can be aggregated to form a composite view (the impact of network changes on cell sitesin an area).
  • the data coming into the digital twin can drive various types of analytics (typically digital simulations and models) within the twin itself – or could transit from one or multiple digital twins to a third-party application (for example, capacity management analytics).
  • the resulting analysis has a range of immediate uses, such as feeding into downstream actuators, or it can be stored for future use, for instance mimicking scenarios for testingwithout affecting any live applications.
  • a digital twin is directly linked to the original, which means it can enable a two-way interaction. Not only can a twin allow others to read its own data, but it can transmit questions or commands back to the original asset.

Enter your details below to download an extract of the report

What is the purpose of a digital twin?

This research uses the phrase “archetypical twin” to describe the most mature twin category, which can be found in manufacturing, operations, construction, maintenance and operating environments. These have been around in different levels of sophistication for the last 10 years or so and are expected to be widely available and mature in the next five years. Their main purpose is to act as a proxy for an asset, so that applications wanting data about the asset can connect directly to the digital twin rather than having to connect directly with the asset. In these environments, digital twins tend to be deployed for expensive and complex equipment which needs to operate efficiently and without significant down time. For example, jet engines or other complex equipment. In the telco, the most immediate use case for an archetypical twin is to model the cell tower and associated Radio Access Network (RAN) electronics and supporting equipment.

The adoption of digital twins should be seen as an evolution from today’s AI models

digital-twins-evolution-of-todays-ai-models-stl-partners

*See report for detailed graphic.

Source: STL Partners

 

At the other end of the maturity curve from the archetypical twin, is the “digital twin of the organisation” (DTO). This is a virtual model of a department, business unit, organisation or whole enterprise that management can use to support specific financial or other decision-making processes. It uses the same design pattern and thinking of a twin of a physical object but brings in a variety of operational or contextual data to model a “non-physical” thing. In interviews for this research, the consensus was that these were not an initial priority for telcos and, indeed, conceptually it was not totally clear whether the benefits make them a must-have for telcos in the mid-term either.

As the telecoms industry is still in the exploratory and trial phase with digital twins, there are a series of initial deployments which, when looked at, raise a somewhat semantic question about whether a digital representation of an asset (for example, a network function) or a system (for example, a core network) is really a digital twin or actually just an organic development of AI models that have been used in telcos for some time. Referring to this as the “digital twin/model” continuum, the graphic above shows the characteristics of an archetypical twin compared to that of a typical model.

The most important takeaway from this graphic are the factors on the right-hand side that make a digital twin potentially much more complex and resource hungry than a model. How important it is to distinguish an archetypical twin from a hybrid digital twin/model may come down to “marketing creep”, where deployments tend to get described as digital twins whether they exhibit many of the features of the archtypical twin or not. This creep will be exacerbated by telcos’ needs, which are not primarily focused on emulating physical assets such as engines or robots but on monitoring complex processes (for example, networks), which have individual assets (for example, network functions, physical equipment) that may not need as much detailed monitoring as individual components in an airplane engine. As a result, the telecoms industry could deploy digital twin/models far more extensively than full digital twins.

Table of contents

  • Executive Summary
    • Choosing where to start
    • Complexity: The biggest short-term barrier
    • Building an early-days digital twin portfolio
  • Introduction
    • Definition of a digital twin
    • What is the purpose of a digital twin?
    • A digital twin taxonomy
  • Planning a digital twin deployment
    • Network testing
    • Radio and network planning
    • Cell site management
    • KPIs for network management
    • Fraud prediction
    • Product catalogue
    • Digital twins within partner ecosystems
    • Digital twins of services
    • Data for customer digital twins
    • Customer experience messaging
    • Vertical-specific digital twins
  • Drivers and barriers to uptake of digital twins
    • Drivers
    • Barriers
  • Conclusion: Creating a digital twin strategy
    • Immediate strategy for day 1 deployment
    • Long-term strategy

Related research

Enter your details below to download an extract of the report

Will web 3.0 change the role of telcos?

Introduction

Over the past 12 months or so, the notion that the Internet is about to see another paradigm shift has received a lot of airtime. Amid all the dissatisfaction with way the Internet works today, the concept of a web 3.0 is gaining traction. At a very basic level, web 3.0 is about using blockchains (distributed ledgers) to bring about the decentralisation of computing power, resources, data and rewards.

STL Partners has written extensively about the emergence of blockchains and the opportunities they present for telcos. But this report takes a different perspective – it considers whether blockchains and the decentralisation they embody will fix the public Internet’s flaws and usher in a new era of competition and innovation. It also explores the potential role of telcos in reinventing the web in this way and whether it is in their interests to support the web 3.0 movement or protect the status quo.

Our landmark report The Coordination Age: A third age of telecoms explained how reliable and ubiquitous connectivity can enable companies and consumers to use digital technologies to efficiently allocate and source assets and resources. In the case of web 3.0, telcos could help develop solutions and services that can help bridge the gap between the fully decentralised vision of libertarians and governments’ desire to retain control and regulate the digital world.

As it considers the opportunities for telcos, this report draws on the experiences and actions of Deutsche Telekom, Telefónica and Vodafone. It also builds on previous STL Partners reports including:

Enter your details below to download an extract of the report

What do we mean by web 3.0?

The term web 3.0 is widely used to refer to the next step change in the evolution of the Internet. For some stakeholders, it is about the integration of the physical world and the digital world through the expansion of the Internet of Things, the widespread use of digital twins and augmented reality and virtual reality. This concept, which involves the capture and the processing of vast amounts of real-time, real-world data, is sometimes known as the spatial web.

While recognising the emergence of a spatial web, Nokia, for example, has defined web 3.0 as a “visually dynamic smart web” that harness artificial intelligence (AI) and machine learning (ML). It describes web 3.0 as an evolution of a “semantic web” with capacity to understand knowledge and data. Nokia believes that greater interconnectivity between machine-readable data and support for the evolution of AI and ML across “a distributed web” could remake ecommerce entirely.

Note, some of these concepts have been discussed for more than a decade. The Economist wrote about the semantic web in 2008, noting then that some people were trying to rebrand it web 3.0.

Today, the term web 3.0 is most widely used as a shorthand for a redistribution of power and data – the idea of decentralising the computation behind Internet services and the rewards that then ensue. Instead of being delivered primarily by major tech platforms, web 3.0 services would be delivered by widely-distributed computers owned by many different parties acting in concert and in line with specific protocols. These parties would be rewarded for the work that their computers do.

This report will focus primarily on the latter definition. However, the different web 3.0 concepts can be linked. Some commentators would argue that the vibrancy and ultimate success of the spatial web will depend on decentralisation. That’s because processing the real-world data captured by a spatial web could confer extraordinary power to the centralised Internet platforms involved. Indeed, Deloitte has made that link (see graphic below).

In fact, one of the main drivers of the web 3.0 movement is a sense that a small number of tech platforms have too much power on today’s Internet. The contention is that the current web 2.0 model reinforces this position of dominance by funnelling more and more data through their servers, enabling them to stay ahead of competitors. For web 3.0 proponents, the remedy is to redistribute these data flows across many thousands of different computers owned by different entities.  This is typically accomplished using what is known as decentralised apps (dapps) running on a distributed ledger (often referred to as a blockchain), in which many different computers store the code and then record each related interaction/transaction.

The spatial web and web 3.0 – two sides of the same coin?

Spacial-web-Web3-Deloitte

Source: Deloitte

For many commentators, distributed ledgers are at the heart of web 3.0 because they enable the categorisation and storage of data without the need for any central points of control. In an article it published online, Nokia predicted new application providers will displace today’s tech giants with a highly distributed infrastructure in which users own and control their own data. “Where the platform economy gave birth to companies like Uber, Airbnb, Upwork, and Alibaba, web 3.0 technology is driving a new era in social organization,” Nokia argues. “Leveraging the convergence of AI, 5G telecommunications, and blockchain, the future of work in the post-COVID era is set to look very different from what we’re used to. As web 3.0 introduces a new information and communications infrastructure, it will drive new forms of distributed social organisation…Change at this scale could prove extremely challenging to established organisations, but many will adapt and prosper.”

Nokia appears to have published that article in March 2021, but the changes it predicted are likely to happen gradually over an extended period. Distributed ledgers or blockchains are far from mature and many of their flaws are still being addressed. But there is a growing consensus that they will play a significant role in the future of the Internet.

Nokia itself is hoping that the web 3.0 movement will lead to rising demand for programmable networks that developers can harness to support decentralised services and apps. In June 2022, the company published a podcast in which Jitin Bhandari, CTO of Cloud and Network Services at Nokia, discusses the concept of “network as code” by which he means the creation of a persona of the network that can be programmed by ecosystem developers and technology application partners “in domains of enterprise, in domains of web 2.0 and web 3.0 technologies, in domains of industry 4.0 applications, in scenarios of operational technology (OT) applications.”  Nokia envisions that 5G networks will be able to participate in what it calls distributed service chains – the interlinking of multiple service providers to create new value.

Although blockchains are widely associated with Bitcoin, they can enable much more than crypto-currencies. As a distributed computer, a blockchain can be used for multiple purposes – it can store the number of tokens in a wallet, the terms of a self-executing contract, or the code for a decentralised app.

As early as 2014, Gavin Wood, the founder of the popular Ethereum blockchain, laid out a vision that web 3.0 will enable users to exchange money and information on the web without employing a middleman, such as a bank or a tech company. As a result, people would have more control over their data and be able to sell it if they choose.

Today, Ethereum is one of the most widely used (and trusted) blockchains. It bills itself as a permissionless blockchain, which means no one controls access to the service – there are no gatekeepers.

Still, as the Ethereum web site acknowledges, there are several disadvantages to web 3.0 decentralisation, as well as advantages. The graphic below which draws on Ethereum’s views and STL analysis, summarises these pros and cons.

Table of Contents

  • Executive Summary
    • Three ways in which telcos can support web 3.0
    • Challenges facing web 3.0
  • Introduction
  • What do we mean by web 3.0?
    • Transparency versus privacy
    • The money and motivations behind web 3.0
    • Can content also be unbundled?
    • Smart contracts and automatic outcomes
    • Will we see decentralised autonomous organisations?
    • Who controls the user experience?
    • Web 3.0 development on the rise
  • The case against web 3.0
    • Are blockchains really the way forward?
    • Missteps and malign forces
  • Ironing out the wrinkles in blockchains
  • Could and should telcos help build web 3.0?
    • Validating blockchains
    • Telefónica: An interface to blockchains
    • Vodafone: Combining blockchains with the IoT
  • Conclusions

Enter your details below to download an extract of the report

Enterprise Wi-Fi 6/7 is here to stay: 5G is not enough

Overview of Wi-Fi 6/7 for enterprises

This report is not a traditional analyst report on Wi-Fi covering market segments, shares and forecasts. Numerous peer organisations have a long tradition of quantitative marketing modelling and prediction; we are not intending to compete with them. For illustration purposes, we have used a couple of charts with the kind permission of Chris DePuy from 650 Group presented at a recent Wi-Fi Now conference, during a joint panel session with the author of this report.

Instead, this report looks more at the strategic issues around Wi-Fi and the enterprise – and the implications and recommendations for CIOs and network architects in corporate user organisations, opportunities for different types of CSPs, important points for policymakers and regulators, plus a preview of the most important technical innovations likely to emerge in the next few years. There may be some differences in stance or opinion compared to certain other STL reports.

The key themes covered in this report are:

    • Background to enterprise Wi-Fi: key uses, channels and market trends
    • Understanding “Wi-Fi for verticals”
    • Decoding the changes and new capabilities that come with Wi-Fi 6, 6E and 7
    • How and where public and private 5G overlaps or competes with Wi-Fi
    • CSP opportunities in enterprise Wi-Fi
    • Wi-Fi and regulation – and the importance of network diversity.

Enter your details below to request an extract of the report

Wi-Fi’s background and history

Today, most readers will first think of Wi-Fi as prevalent in the home and across consumer devices such as smartphones, laptops, TVs, game consoles and smart speakers. In total, there are over 18 billion Wi-Fi devices in use, with perhaps 3-4bn new products shipping annually.

Yet the history of Wi-Fi – and its underlying IEEE802.11 technology standards – is anchored in the enterprise.

The earliest incarnations of “wireless ethernet” in the 1990s were in sectors like warehousing and retail, connecting devices such as barcode scanners and point-of-sale terminals. Early leaders around 2000-2005 were companies such as Symbol, Proxim, 3Com and Lucent, supplying both industrial applications and (via chunky plug-in “PCMCIA” cards) laptops, mostly used by corporate employees.

During the 2003-2010 period, Wi-Fi exploded for both enterprises and (with the help of Apple and Intel) consumer laptops, and eventually early smartphones based on Windows and Symbian OS’s, then later iOS and Android.

The corporate world in “carpeted offices” started deploying more dedicated, heavyweight switched systems designed for dense networks of workers at desks, in meeting rooms and in cubicles. Venue Wi-Fi grew quickly as well, with full coverage becoming critical in locations such as airports and hotels, both for visitors and for staff and some connected IT systems. A certain amount of outdoor Wi-Fi was deployed, especially for city centres, but gained little traction as it coincided with broader coverage (and falling costs) of cellular data.

A new breed of enterprise Wi-Fi vendors emerged – and then quickly became consolidated by major networking and IT providers. This has occurred in several waves over the last 20 years. Cisco bought Airespace (and later Meraki and others), Juniper bought Trapeze and Mist Systems, and HP (later HPE) acquired Aruba. There has also been some telecom-sector acquisitions of Wi-Fi vendors, with Commscope acquiring Ruckus, and Ericsson buying BelAir.

While telcos have had some important roles in public or guest Wi-Fi deployments, including working with enterprises in sectors such as cafes, retail, and transport, they have had far less involvement with Wi-Fi deployed privately in enterprise offices, warehouses, factories, and similar sites. For the most part that has been integrated with the wired LAN infrastructure and broader IT domain, overseen by corporate IT/network teams and acquired via a broad array of channels and systems integrators. For industrial applications, many solution providers integrate Wi-Fi (and other wireless mechanisms) directly into machinery and automation equipment.

Looking to the future, enterprise Wi-Fi will coexist with both public and private 5G (including systems or perhaps slices provided by telcos), as well as various other wireless and fibre/fixed connectivity modes. Some elements will converge while others will stay separate. CSPs should “go with the grain” of enterprise networks and select/integrate/operate the right tools for the job, rather than trying to force-fit their preferred technical solution.

Roles and channels for enterprise Wi-Fi

Today, there are multiple roles for Wi-Fi in a business or corporate context. The most important include:

  • Traditional use in offices, both for normal working areas and shared spaces such as meeting and conference rooms. There is often a guest access option.
  • Small businesses use Wi-Fi extensively, as many workers rely on laptops and similar devices, plus vertical-specific endpoints such as payment terminals. Often, they will obtain Wi-Fi capabilities along with their normal retail business broadband connection from a service provider. This may include various types of guest-access option. Common use of shared buildings such as multi-tenant office blocks or retail malls means there may be a reliance on the landlord or site operator for network connectivity.
  • Working from home brings a wide range of new roles for Wi-Fi, especially where there is an intersection of corporate applications and security, with normal home and consumer demand. A growing range of solutions targets this type of converged situation.
  • Large visitor-led venues such as sports stadia, hotels and resorts are hugely important for the Wi-Fi industry. They often have guests with very high expectations of Wi-Fi reliability, coverage, and performance – and also often use the infrastructure themselves for staff, displays and various IoT and connected systems.
  • Municipal and city authorities have gone through two or more rounds of Wi-Fi deployments. Initial 2010-era visions for connectivity often stalled because of a mismatch between usage at the time (mostly on laptops, indoors) and coverage (mostly outdoors). Since then, the rise of smartphone ubiquity, plus a greater array of IoT and smart city devices has made city-centre Wi-Fi more useful again. Increasingly, it is being linked to 5G small cell deployments, metro fibre networks – and made more usable with easier roaming / logon procedures. Some local authorities’ scope also covers Wi-Fi use within education and healthcare settings.
  • Public Wi-Fi hotspots overlap with various enterprise sectors, most notably in transport, cafes/restaurants and hospitality sectors. Where organisations have large venues or multiple sites, such as chain of cafes or retail outlets, there is likely to be some wider enterprise proposition involved.
  • The transport industry is a hugely important sector for enterprise Wi-Fi solutions. Vehicles themselves (buses, planes, trains, taxis) require connectivity for passengers, while transport hubs (airports, stations, etc.) have huge requirements for ease-of-access and performance for Wi-Fi.
  • Wi-Fi technology is also widely used as the basis for fixed-wireless access over medium-to-wide areas. Sometimes using vendor-specific enhancements, it is common to use unlicenced spectrum and 802.11-based networks for connectivity to rural businesses or specific fixed assets. A new version of Wi-Fi technology (802.11ah HaLow) also allows low-power wide area applications for sensors and other IoT devices, which can potentially compete against LoRa and 4G NB-IoT, although it is very late to the market.
  • Niche applications for Wi-Fi technology also exist, for example backhauling other wireless technologies such as Bluetooth, for in-building sensing and automation. There are also emerging propositions such as using high-capacity 60GHz Wi-Fi to replace fibres and cabling inside buildings, especially for rapid installation or in environments where drilling holes in walls requires permits.

Enterprise Wi-Fi solutions cover a broad range of contexts and uses

Given the range of Wi-Fi enterprise market sectors and use cases, it is unsurprising that there are also multiple ways for companies and organisations to obtain the infrastructure, as well as operate the connectivity functions or services.

Some of the options include:

  • Self-provision: Many large organisations will source, install, and operate their own Wi-Fi networks via their IT and networking teams, as they do for fixed LAN and sometimes WAN equipment. They may rely on vendor or outsourced support and specific tasks such as wiring installation.
  • Broadband CSP: Especially for smaller sites, Wi-Fi is often obtained alongside business broadband connectivity, perhaps from an integrated router managed by the ISP.
  • Enterprise MSP: Larger businesses may use dedicated enterprise-grade service providers for their Internet connections, UCaaS services, SD-WAN / SASE networks and so on. These organisations may also provide on-site Wi-Fi installation and management services, or work with sub-contractors to deliver them.
  • Solution providers: Various IT and OT systems, such as building management systems or industrial automation solutions, may come with Wi-Fi embedded into the fabric of the proposition.
  • Managed Wi-Fi specialists: Especially for visitor-centric locations like transport hubs, Wi-Fi coverage and operation may be outsourced to a third party managed service operator. They will typically handle the infrastructure (and any upgrades), authentication, security and backhaul on a contractual basis. They will also likely provide staff/IoT connections as well as guest access.
  • Network integrators: Enterprises may obtain Wi-Fi installations as a one-off project from a network specialist (perhaps with separate maintenance / upgrade agreements). This may well be combined with fixed LAN infrastructure and other relevant elements. This may also be a channel for hybrid Wi-Fi / private cellular in future.
  • Vertical specialists: Various industries such as hotels, aviation, hospitals, mining and so on will often have dedicated companies catering to sector-specific needs, standards, regulations, or business practices. They may tie together various other technology elements, such as IoT connections, asset tracking, voice communications and so forth, using Wi-Fi where appropriate.
  • In-building wireless specialists: Various companies specialise in both indoor cellular coverage systems and Wi-Fi. Often linked to tower companies or neutral-host business models.

Table of Contents

  • Executive Summary
  • Introduction
    • Structure and objectives of this report
    • Background and history
    • Roles and channels for enterprise Wi-Fi
    • Recent enterprise Wi-Fi market trends
    • Note on terminology
  • The evolution of “Wi-Fi for verticals”
    • Understanding Wi-Fi “verticals”
    • Existing vertical-specific Wi-Fi solutions
    • Wi-Fi in industry verticals – building ecosystems
  • Wi-Fi 6, 6E & 7: Rapid cadence or confusion?
    • Continual evolution of Wi-Fi capabilities: 6, 6E, 7
    • Wi-Fi 7 may be a game-changer for enterprise
    • The long-term future: Wi-Fi 8 and beyond
    • Other Wi-Fi variants: 60GHz and HaLow
  • Where do Wi-Fi and 5G overlap competitively?
    • Does private 5G change the game?
    • Convergence / divergence
  • The political and regulatory dimensions of enterprise wireless
    • 6GHz spectrum
  • CSPs and enterprise Wi-Fi
    • CSPs and large enterprise / industrial Wi-Fi
    • Wi-Fi service value-adds
    • Wi-Fi and edge compute
  • Conclusions

Related research

Enter your details below to request an extract of the report

Scaling private cellular and edge: How to avoid POC and pilot purgatory

Evaluating the opportunities with private cellular and edge

The majority of enterprises today are still at the early stages of understanding the potential benefits of private cellular networking and edge computing in delivering enhanced business outcomes, but the interest is evident. Within private cellular for example, we have seen significant traction and uptake globally during 2020 and 2021, partially driven by increased availability and routes to spectrum due to localised spectrum licensing models across different markets (see this report). This has resulted in several trials and engagements with large companies such as Bosch, Ford, Rio Tinto, Heathrow Airport and more.

However, despite the rising interest, enterprises often encounter challenges with a lack of internal stakeholder alignment or the inability to find the right stakeholder to be accountable and own the deployment. Furthermore, many enterprises feel they lack the expertise to deploy and manage private networking and/or edge solutions. In some cases, enterprises have also cited a lack of maturity in the device and solution ecosystem, for example with lack of supported (or industry-grade) devices which have a 5G/LTE/CBRS capability embedded in them, or a significant inertia in the installed base around other connectivity solutions (e.g. Wi-Fi). Therefore, despite the value and business outcomes that private cellular and edge compute can unlock for enterprises, the opportunity is rarely clear-cut.

Our research is based on findings and analysis from a global interview programme with 20 enterprises in sectors that are ahead in exploring private cellular and edge computing, primarily in the industrial verticals, as well as telecoms operators and solutions providers within the private cellular and edge computing ecosystem.

Enter your details below to request an extract of the report

Telcos see private cellular and edge as two peas in a pod…

Telecoms operators see private cellular and edge computing as part of a larger revenue opportunity beyond fixed and public cellular. It is an opportunity for telcos to move from being seen as horizontal players providing increasingly commoditised connectivity services, to more vertical players that address value-adding industry-specific use cases. Private cellular and edge compute can be seen as components of a wider innovative and holistic end-to-end solution for enterprises, and part of the telcos’ ambition to become strategic partners or trusted advisors to customers.

We define a private cellular network as a dedicated local on-premises network, designed to cover a geographically-constrained area or site such as a production plant, a warehouse or a mine. It uses dedicated spectrum, which can be owned by the enterprise or leased from a telco operator or third party, and has dedicated operating functions that can run on the enterprise’s own dedicated or shared edge compute infrastructure. Private cellular networking is expected to play a key role in future wireless technology for enterprise on-premises connectivity. Private cellular networks can be configured specifically to an individual enterprise’s requirements to meet certain needs around reliability, throughput, latency etc. to enable vertical-specific use cases in a combined way that other alternatives have struggled to before. Although there are early instances of private networks going back to 2G GSM-R in the railway sector, for the purpose of this report, we focus on private cellular networks that leverage 4G LTE (Long Term Evolution) or 5G mobile technology.

Figure 1: Private cellular combines the benefits of fixed and wireless in a tailored way

benefits of private cellular

Source: STL Partners

Edge compute is about bringing the compute, storage and processing capabilities and power of cloud closer to the end-user or end-device (i.e. the source of data) by locating workloads on distributed physical infrastructure. It combines the key benefits of local compute, such as low latency, data localisation and reduced backhaul costs, with the benefits of cloud compute, namely scalability, flexibility, and cloud native operating models.

Figure 2: Edge computing combines local and cloud compute benefits to end-users

benefits of edge computing

Source: STL Partners

Within the telecoms industry, private cellular and edge computing are often considered two closely interlinked technologies that come hand-in-hand. Our previous report, Navigating the private cellular maze: when, where and how, explored the different private cellular capabilities that enterprises are looking to leverage, and our findings showed that security, reliability and control were cited as the most important benefits of private cellular. In many ways, edge compute also addresses these needs. Both are means of delivering ultra-low latency, security, reliability and high-throughput real time analytics, but in different ways.

…but this is not necessarily the case with enterprises

Although the telecoms industry often views edge computing and private cellular in the same vein, this is not always the case from the enterprise perspective. Not only do the majority of enterprises approach edge computing and private cellular as separate technologies, addressing separate needs, many are still at the early stages of understanding what they are.

There is oftentimes also a different interpretations and confusion of terminology when it comes to private cellular and edge compute. For example, in our interviews, a few enterprises describe traditional on-premises compute with local dedicated compute facilities within an operating site (e.g. a server room) as a flavour of edge compute. We argue that the key difference between traditional on-premises compute and on-premises edge compute is that with the latter, the applications and underlying infrastructure are both more cloud-like. Applications that leverage edge compute also use cloud-like technologies and processes (such as continuous integration and continuous delivery, or CI/CD in short) and the edge infrastructure uses containers or virtual machines and can be remotely managed (rather than being monolithic).

The same applies when it comes to private cellular networking, where the term ‘private network’ is used differently by certain individuals to refer to virtual private networks (VPNs) as opposed to the dedicated local on-premises network we have defined above. In addition, when it comes to private 5G, there is also confusion as to the difference between better in-building coverage of public 5G (i.e. the macro network) versus a private 5G network, for a manufacturing plant for example. This will only be further complicated by the upswing of network slicing, which can sometimes (incorrectly) be marketed as a private network.

Furthermore, for enterprises that are more familiar with the concepts, many are still looking to better understand the business value and outcomes that private LTE/5G and edge compute can bring, and what they can enable for their businesses.

 

Table of Contents

  • Executive Summary
  • Introduction
    • Evaluating the opportunities with private cellular and edge
    • Telcos see private cellular and edge as two peas in a pod…
    • …but this is not necessarily the case with enterprises
    • Most private cellular or edge trials or PoCs have yet to scale
  • Edge and private cellular as different tracks
    • Enterprises that understand private cellular don’t always understand edge (and vice versa)
    • Edge and private cellular are pursued as distinct initiatives
  • Breaking free from PoC purgatory
    • Lack of stakeholder alignment
    • Ecosystem inertia
    • Unable to build the business case
  • Addressing different deployment pathways
    • Tactical solutions versus strategic transformations
    • Find trigger points as key opportunities for scaling
    • Readiness of solutions: Speed and ease of deployment
  • Recommendations for enterprises
  • Recommendations for telco operators
  • Recommendations for others
    • Application providers, device manufacturers and OEMs
    • Regulators

Enter your details below to request an extract of the report

MWC 2022: Sensing the winds of change

What did STL’s analysts find at MWC 2022?

This report is a collection of our analyst’s views of what they saw at the 2022 Mobile World Congress (MWC 2022). It comprises our analysts’ perspectives on its major themes:

  • How the industry is changing overall
  • The impact of the metaverse
  • New enterprise and consumer propositions
  • Progress towards telco cloud
  • Application of AI, automation and analytics (A3)

We would like to thank our partners at the GSMA for a good job done well. The GSMA say that there were 60,000 attendees this year, which is down from the 80-100k of 2019 but more than credible given the ongoing COVID-19 situation. It was nonetheless a vibrant and valuable event, and a great opportunity to see many wonderful people again face to face, and indeed, meet some great new ones.

Enter your details below to request an extract of the report

MWC 2022 in context of its time

It is impossible to write about MWC 2022 without putting it context of its time. It has taken place three days after the Russian invasion of Ukraine started on February 24th, 2022.

Speakers made numerous direct and indirect mentions of the war, and it was clear that a sense of sadness was felt by everyone we spoke to. This slightly offset the enthusiasm and warmth that we and many others felt on being back together in person, with our clients and the industry.

Broad support for the Ukraine was visible among many delegates and there was no Russian delegation. While totally appropriate, the Fira was a little poorer for that as one of the joys of MWC is its truly global embodiment of a vibrant industry.

We all hope for a speedy and peaceful resolution to that situation, and to see our Russian and Ukrainian colleagues again in peace soon. Sadly, as we write from and just after Barcelona, bombs and shells are falling on civilians on the same continent and the route to peace is not yet evident.

As this new and shocking war has come in Europe while COVID is still in a pandemic phase it is a reminder that change and challenge never ends. The telecoms industry responded well to COVID, and now it must again for this and all the challenges it will face in the future, which include further geopolitical risks and shocks and many more opportunities too.

The biggest opportunity for telecoms, and telcos in particular, is to build on the momentum of change rather than rest on its laurels. The threat is that it will settle for a low risk but ultimately lower value path of sticking to the same old same.  We look at the evidence for telcos successfully changing their mindset in New enterprise business: Opening, if not yet changed mindsets.

Connecting technologies

This is my 11th MWC. I came looking for what’s changed and what it means. This is what I found. Andrew Collinson, Managing Director, STL Partners Research.

Cross-dressing and role play

Trying to leave the war at the door, what else did we find at the Fira? One of the mind-bending tasks of walking through the cacophony of sights and sounds of a huge industry ecosystem on display is trying to make sense of what is going on. Who is here, and what are they trying to tell me?

First impressions count. The simple things about how companies present themselves initially mean a great deal. They often show the identity they are trying to project – who or what they are trying to be seen as more than all the detail put together. The first impression I got at MWC 2022 was that almost everyone was trying to dress like someone else.

Microsoft showed photos of cell towers on its stand while all the telco CEOs talked about the “new tech order” and becoming techcos. McKinsey talked about its ‘old friends’ in the telecoms industry and talked about sustainability on its hard-edged stand, while AWS had an advert on the frontage of the Fira and a stand in the “Four Years from Now” zone.

We’re all telcos / techcos now

We're all telcos techcos now

Source: STL Partners, AWS, Microsoft, McKinsey

It’s all about “connecting technologies”

Regular readers of STL’s material will have heard of the Coordination Age: our concept that there is a universal need for better use of resources which will be met in part by the application of connecting technologies (e.g. fibre, mobile, 5G, AI, automation, etc.).

Once upon a time, it was simply people that needed to be connected to each other. Now a huge variety of stuff needs connecting: e.g., devices, computer applications, business processes, business assets and people.

A big question in all this is whether operators have really understood how outdated their traditional operator centric view of the world has become as the industry has changed. Sure, new telecoms networks still need to be built and extended. But it isn’t just operators using licensed technologies that can do this anymore, and the value has increasingly moved to the players that can make all the stuff work: systems integrators and other technology and software players. We’ll cover operators’ mindsets more in the section titled New enterprise business: Opening, if not yet changed mindsets.

Private matters

Private networks was also a big area of focus at MWC 2022, and understandably so too as there is a lot of interest in the concept in various sectors, especially in ports and airports, mining, and manufacturing. Much of the interest for this comes from the hype around 5G which has attracted other industries to look at the technology. However, while there are some interesting developments in practice (for example Huawei and others at Shenzen port in China), many of the applications are at least as well served, and in some cases, better served by other connectivity technologies, e.g. Wi-Fi, wired connections, narrow-band IoT, and 3G / 4G, edge computing and combinations thereof. So 5G is far from the only horse in the race, and we will be looking closely at the boundary conditions and successful use cases for Private 5G in our future research.

Would you pay for “unexpected benefits”?

One great stumbling block for telcos and other business used to traditional business thinking has been “how do you make a business case for new technology?”

The classic telecoms route is to dig around for a cost-saving and revenue enhancement case and then try to bend the CFO’s ear until they give you some money to do your thing. This is fair enough, to a point.

The challenge is, what do you do when you don’t know what you are going to find and/or you can’t prove it? Or worse still, you can only prove it after everybody else in the market has proven it for you and you are then at a competitive disadvantage.

One story I saw and see elsewhere repeated endlessly is that of “unexpected benefits”. This was a phrase that Alison Kirkby, CEO Telia, used to describe what happened when the value of its population movement data was recognised by the Swedish Government during the COVID crisis. It had pulled together the data for one set of reasons, and suddenly this very compelling use came to light.

Another I heard from Qualcomm, which told of putting IoT driven shelf price signs in retail. Originally it was developed to help rapid repricing for consumers in store, then COVID struck a few weeks after installation. This meant people switched to online shopping and the stores were then mainly used by  pickers assembling orders for delivery. The retailer found that by using the signs to help the pickers assemble their loads faster they could make the process about a third more productive. That’s a lot in retail.

This is the reality of transformational business models and technologies. It is incredibly hard to foresee what is really going to work, and how. Even after some time with a new way of working new uses continue to emerge. That’s not to say that you can’t narrow it down a bit – and this is something we spend a lot of our time working on. However, a new thing I will be asking our analysts to help figure out is “how can you tell when and where there are likely to be unexpected benefits?”

 

Table of Contents

  • Executive Summary
  • Introduction
    • MWC 2022 in context of its time
  • MWC 2022: Connecting technologies
    • Cross-dressing and role play
    • Would you pay for “unexpected benefits”?
    • Getting physical, getting heavy
    • Glasses are sexy (again)
    • Europe enviously eyes eastwards
  • New enterprise business: Opening, if not yet changed mindsets
    • Customer centricity: Starting to emerge
    • Becoming better partners: Talking the talk
    • New business models: Not quite there
  • The Metaverse: Does it really matter?
    • Can the Metaverse be trusted?
    • Exploding supply, uncertain quality
    • The non-fungible flexibility paradox
    • A coordinating role for telcos?
    • Don’t write it off, give it a go
  • Consumers: XR, sustainability and smarthome
    • Operators: Aiming for smart and sustainable
    • Vendors and techcos: Would you like AI with that?
    • More Metaverse, VR and AR
    • Other interesting finds: Commerce, identity, video
  • Telco Cloud: The painful gap between theory and practice
    • Brownfield operators are still on their virtualisation journey
    • Greenfield operators: Cloud native and automated from day one
    • Telcos on public could: Shall I, shant I?
  • AI and automation: Becoming adaptive
    • Looking out for good A3 use cases / case studies
    • Evidence of a maturing market?
    • Welcome signs of progress towards the Coordination Age

 

Enter your details below to request an extract of the report

Delivering on SD-WAN: How to choose the right partners

SD-WAN has been made in North America…

65% of the North American operators featured in our Telco Cloud Tracker had deployed SD-WAN by the end of 2020

By contrast, 49% Asia-Pacific-based telcos had launched SD-WAN in their region by the same time and 44% European telcos were offering SD-WAN within Europe

As this market matures operators that are new to the market, or seeking to expand their services internationally, should choose an SD-WAN platform that will enable them to differentiate in their local markets or play to the telcos strengths.

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

Challenges for telcos considering introducing SD-WAN

  1. Lack of relevant skills or experience: telcos worry about risks of ‘outsourcing’ a significant part of their WAN services, operations and infrastructure to SD-WAN vendor; and about integration with BSS / OSS etc.
    • Leading SD-WAN vendors collaborate closely with telcos to facilitate integration of their platforms with telcos’ networks and services
    • SD-WAN platforms provide management interfaces that are easy for non-technical staff to operate, and offer visibility into application workflows and network KPIs
  2. How to differentiate SD-WAN service: how to offer USPs for the local market and differentiate from competitors
    • Ensure you choose an SD-WAN platform that suits the key needs of your customer base (see competitive analysis in next section)
    • Differentiation can also be achieved through the services telcos and vendors offer around SD-WAN products, e.g. good local market and language support
  3. Absence of appropriate infrastructure, facilities and networks: e.g. lack of fixed broadband networks; insufficient SD-WAN platform support for LTE / 5G
    • Many SD-WAN platforms offer LTE and 5G connectivity mainly as a back-up to IP-MPLS and fixed broadband. But many telcos, especially in emerging markets, serve enterprise sites through FWA. How well do platforms support this?
    • Many SD-WAN platforms rely on redundant connectivity to cloud-based hubs: are these always available for telcos serving remote areas?
  4. Risk of cannibalising enterprise revenues and compromising ROI from existing products and assets: e.g. IP-MPLS; IP-VPN; dedicated Internet; etc.
    • Telcos can offer different classes of SD-WAN at different price points, inc. overlay-only services to clients that want them
    • SD-WAN now seen as a value-add to IP-MPLS, for which a premium can be charged: can be integrated with telcos’ managed services offerings

How to assess the different SD-WAN platforms?

How to assess SD-WAN paltforms

Source: STL Partners

The rest of this report includes a competitive analysis of key SD-WAN platform players and how they can enable telcos’ to meet enterprise customer needs and future proof their SD-WAN investments.

Table of Contents

  • Executive Summary
  • What are the challenges to introducing SD-WAN
  • Assessing different SD-WAN platforms
    • Cisco
    • VMWare
    • Fortinet
    • Versa Networks
    • Palo Alto
    • Silver Peak
    • Juniper
    • Aryaka
  • A framework for selecting and implementing SD-WAN platforms

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

Why the consumer IoT is stuck in the slow lane

A slow start for NB-IoT and LTE-M

For telcos around the world, the Internet of Things (IoT) has long represented one of the most promising growth opportunities. Yet for most telcos, the IoT still only accounts for a low single digit percentage of their overall revenue. One of the stumbling blocks has been relatively low demand for IoT solutions in the consumer market. This report considers why that is and whether low cost connectivity technologies specifically-designed for the IoT (such as NB-IoT and LTE-M) will ultimately change this dynamic.

NB-IoT and LTE-M are often referred to as Massive IoT technologies because they are designed to support large numbers of connections, which periodically transmit small amounts of data. They can be distinguished from broadband IoT connections, which carry more demanding applications, such as video content, and critical IoT connections that need to be always available and ultra-reliable.

The initial standards for both technologies were completed by 3GPP in 2016, but adoption has been relatively modest. This report considers the key B2C and B2B2C use cases for Massive IoT technologies and the prospects for widespread adoption. It also outlines how NB-IoT and LTE-M are evolving and the implications for telcos’ strategies.

This builds on previous STL Partners’ research, including LPWA: Which way to go for IoT? and Can telcos create a compelling smart home?. The LPWA report explained why IoT networks need to be considered across multiple generations, including coverage, reliability, power consumption, range and bandwidth. Cellular technologies tend to be best suited to wide area applications for which very reliable connectivity is required (see Figure below).

IoT networks should be considered across multiple dimensions

IoT-networks-disruptive-analysis-stl-2021
Source: Disruptive Analysis

 

Enter your details below to request an extract of the report

The smart home report outlined how consumers could use both cellular and short-range connectivity to bolster security, improve energy efficiency, charge electric cars and increasingly automate appliances. One of the biggest underlying drivers in the smart home sector is peace of mind – householders want to protect their properties and their assets, as rising population growth and inequality fuels fear of crime.

That report contended that householders might be prepared to pay for a simple and integrated way to monitor and remotely control all their assets, from door locks and televisions to solar panels and vehicles.  Ideally, a dashboard would show the status and location of everything an individual cares about. Such a dashboard could show the energy usage and running cost of each appliance in real-time, giving householders fingertip control over their possessions. They could use the resulting information to help them source appropriate insurance and utility supply.

Indeed, STL Partners believes telcos have a broad opportunity to help coordinate better use of the world’s resources and assets, as outlined in the report: The Coordination Age: A third age of telecoms. Reliable and ubiquitous connectivity is a key enabler of the emerging sharing economy in which people use digital technologies to easily rent the use of assets, such as properties and vehicles, to others. The data collected by connected appliances and sensors could be used to help safeguard a property against misuse and source appropriate insurance covering third party rentals.

Do consumers need Massive IoT?

Whereas some IoT applications, such as connected security cameras and drones, require high-speed and very responsive connectivity, most do not. Connected devices that are designed to collect and relay small amounts of data, such as location, temperature, power consumption or movement, don’t need a high-speed connection.

To support these devices, the cellular industry has developed two key technologies – LTE-M (LTE for Machines, sometimes referred to as Cat M) and NB-IoT (Narrowband IoT). In theory, they can be deployed through a straightforward upgrade to existing LTE base stations. Although these technologies don’t offer the capacity, throughput or responsiveness of conventional LTE, they do support the low power wide area connectivity required for what is known as Massive IoT – the deployment of large numbers of low cost sensors and actuators.

For mobile operators, the deployment of NB-IoT and LTE-M can be quite straightforward. If they have relatively modern LTE base stations, then NB-IoT can be enabled via a software upgrade. If their existing LTE network is reasonably dense, there is no need to deploy additional sites – NB-IoT, and to a lesser extent LTE-M, are designed to penetrate deep inside buildings. Still, individual base stations may need to be optimised on a site-by-site basis to ensure that they get the full benefit of NB-IoT’s low power levels, according to a report by The Mobile Network, which notes that operators also need to invest in systems that can provide third parties with visibility and control of IoT devices, usage and costs.

There are a number of potential use cases for Massive IoT in the consumer market:

  • Asset tracking: pets, bikes, scooters, vehicles, keys, wallets, passport, phones, laptops, tablets etc.
  • Vulnerable persontracking: children and the elderly
  • Health wearables: wristbands, smart watches
  • Metering and monitoring: power, water, garden,
  • Alarms and security: smoke alarms, carbon monoxide, intrusion
  • Digital homes: automation of temperature and lighting in line with occupancy

In the rest of this report we consider the key drivers and barriers to take-up of NB-IoT and LTE-M for these consumer use cases.

Table of Contents

  • Executive Summary
  • Introduction
  • Do consumers need Massive IoT?
    • The role of eSIMs
    • Takeaways
  • Market trends
    • IoT revenues: Small, but growing
  • Consumer use cases for cellular IoT
    • Amazon’s consumer IoT play
    • Asset tracking: Demand is growing
    • Connecting e-bikes and scooters
    • Slow progress in healthcare
    • Smart metering gains momentum
    • Supporting micro-generation and storage
    • Digital buildings: A regulatory play?
    • Managing household appliances
  • Technological advances
    • Network coverage
  • Conclusions: Strategic implications for telcos

 

Enter your details below to request an extract of the report

Are telcos smart enough to make money work?

Telco consumer financial services propositions

Telcos face a perplexing challenge in consumer markets. On the one hand, telcos’ standing with consumers has improved through the COVID-19 pandemic, and demand for connectivity is strong and continues to grow. On the other hand, most consumers are not spending more money with telcos because operators have yet to create compelling new propositions that they can charge more for. In the broadest sense, telcos need to (and can in our view) create more value for consumers and society more generally.

Download the report extract

As discussed in our previous research, we believe the world is now entering a “Coordination Age” in which multiple stakeholders will work together to maximize the potential of the planet’s natural and human resources. New technologies – 5G, analytics, AI, automation, cloud – are making it feasible to coordinate and optimise the allocation of resources in real-time. As providers of connectivity that generates vast amounts of relevant data, telcos can play an important role in enabling this coordination. Although some operators have found it difficult to expand beyond connectivity, the opportunity still exists and may actually be expanding.

In this report, we consider how telcos can support more efficient allocation of capital by playing in the financial services sector.  Financial services (banking) sits in a “sweet spot” for operators: economies of scale are available at a national level, connected technology can change the industry.

Financial Services in the Telecoms sweet spot

financial services

Source STL Partners

The financial services industry is undergoing major disruption brought about by a combination of digitisation and liberalisation – new legislation, such as the EU’s Payment Services Directive, is making it easier for new players to enter the banking market. And there is more disruption to come with the advent of digital currencies – China and the EU have both indicated that they will launch digital currencies, while the U.S. is mulling going down the same route.

A digital currency is intended to be a digital version of cash that is underpinned directly by the country’s central bank. Rather than owning notes or coins, you would own a deposit directly with the central bank. The idea is that a digital currency, in an increasingly cash-free society, would help ensure financial stability by enabling people to store at least some of their money with a trusted official platform, rather than a company or bank that might go bust. A digital currency could also make it easier to bring unbanked citizens (the majority of the world’s population) into the financial system, as central banks could issue digital currencies directly to individuals without them needing to have a commercial bank account. Telcos (and other online service providers) could help consumers to hold digital currency directly with a central bank.

Although the financial services industry has already experienced major upheaval, there is much more to come. “There’s no question that digital currencies and the underlying technology have the potential to drive the next wave in financial services,” Dan Schulman, the CEO of PayPal told investors in February 2021. “I think those technologies can help solve some of the fundamental problems of the system. The fact that there’s this huge prevalence and cost of cash, that there’s lack of access for so many parts of the population into the system, that there’s limited liquidity, there’s high friction in commerce and payments.”

In light of this ongoing disruption, this report reviews the efforts of various operators, such as Orange, Telefónica and Turkcell, to expand into consumer financial services, notably the provision of loans and insurance. A close analysis of their various initiatives offers pointers to the success criteria in this market, while also highlighting some of the potential pitfalls to avoid.

Table of contents

  • Executive Summary
  • Introduction
  • Potential business models
    • Who are you serving?
    • What are you doing for the people you serve?
    • M-Pesa – a springboard into an array of services
    • Docomo demonstrates what can be done
    • But the competition is fierce
  • Applying AI to lending and insurance
    • Analysing hundreds of data points
    • Upstart – one of the frontrunners in automated lending
    • Takeaways
  • From payments to financial portal
    • Takeaways
  • Turkcell goes broad and deep
    • Paycell has a foothold
    • Consumer finance takes a hit
    • Regulation moving in the right direction
    • Turkcell’s broader expansion plans
    • Takeaways
  • Telefónica targets quick loans
    • Growing competition
    • Elsewhere in Latin America
    • Takeaways
  • Momentum builds for Orange
    • The cost of Orange Bank
    • Takeaways
  • Conclusions and recommendations
  • Index

This report builds on earlier STL Partners research, including:

Download the report extract

Telecoms priorities: Ready for the crunch?

The goal of this research is to understand how telecoms operators’ investment priorities and investments are likely to change as the COVID-19 crisis recedes.  To do this, we collected 144 survey responses from participants in telecoms operators, telecoms vendors, and analysts and consultants and other groups. All responses are treated in strict personal and company confidence. Take the survey here.

This research builds on our previous content on the impact of the pandemic to the telecoms industry: COVID-19: Now, next and after (March 2020), COVID-19: Impact on telco priorities (May 2020), based on a survey undertaken in April and early May 2020 and Recovering from COVID: 5G to stimulate growth and drive productivity (August 2020).  STL Partners has also hosted three webinar on the topic (March to July 2020).

This deck summarises the findings of our industry research on telecoms priorities at the start of 2021.

We explored the research in our webinar,  State of the Industry: 2021 Priorities (click on the link to view the recording).

Background to the telecoms priorities survey – January 2021

The respondents were fairly evenly split between telcos, vendors, and ‘others’ (mainly analysts and consultants). This sample contained a higher proportion of European and American respondents than industry average, so is not fully globally representative. The split of company types and geography was broadly similar to the May 2020 survey, with the exception of the MENA region, where there were less than half the prior respondents – a total of 7. However those respondents were senior and well known to STL.

Who took the survey?

telco industry breakdown

Source: STL telecoms priorities survey, 144 respondents, 31st January 2021

48% of respondents were C-Level/VP/SVP/Director level. Functionally, most respondents work in senior HQ and operational management areas. Compared to May 2020, there were proportionally slightly more senior respondents, and slightly less in product and strategy roles.

What are their roles?

Senior participants

Source: STL telecoms priorities survey, 144 respondents, 31st January 2021

How respondents perceive priorities, as the COVID threat recedes

There were increases in respondent confidence in almost every category we surveyed from May 2020 to Jan 2021.

  • Telecoms automation and agility remain top priorities across the industry – and transformation has moved up the agenda.
  • Appetite for 5G investments increased the most of all areas surveyed in the last 8 months.
  • The ‘consumerisation’ of enterprise continues, although security and work from home (WFH) services have overtaken conferencing and VPNs in priority.
  • Healthcare remains the most accelerated vertical / application opportunity of all those impacted in the current crisis.
  • The priority of consumer services has significantly increased yet confidence in making any additional money in the sector is low.
  • Leadership and transformation: COVID 19 has empowered an industry-wide belief that change is possible.
  • Transformation and innovation are high priorities, and appetite for sustainability and recruitment has returned, but there are doubts about some telco leaders’ commitment and ability to grasp and invest in new opportunities.

STL Partners assesses the telecoms industry to be at a crunch point: COVID has injected further pace to the rapid evolution of the world economy. Telcos that have been focused on responding to immediate pandemic-induced challenges, will emerge from the crisis faced with an urgency to respond to this evolution – key choices that telcos might have had 5-10 years to ponder are being crunched into the next 0-3 years.

Our findings suggest that most telcos are only partly ready for this disruptive opportunity.

Enter your details below to request an extract of the report

Notes on interpreting the research findings

  • The way research respondents perceive any given question is generally dependent on their current situation and knowledge. To get relevant answers, we asked all respondents if they were interested or involved in specific areas of interest (e.g. ‘consumer services’), and to not answer questions they couldn’t (e.g. for confidentiality reasons) or simply didn’t know or have a clear opinion.
  • We saw no evidence that respondents were ‘gaming’ the results to be favourable to their interests.
  • Results need to be seen in the context that telcos themselves vary widely in size, profitability and market outlook. For example, for some, 5G seems like a valid investment, whereas for others the conditions are currently much less promising. COVID-19 has clearly had some impact on these dynamics, and our analysis attempts to reflect this impact on the overall balance of opinions as well as some of the specific situations to bring greater nuance.
  • In December 2020 / January 2021, the worldwide impact of COVID-19 is increasingly well understood and less of a shock than was the case in May / June 2020. Vaccines are beginning to be rolled out but it is an early stage in the process, and new variants of COVID-19 have evolved in the UK, South Africa and Brazil (and possibly elsewhere). There are geo-political wrangles on vaccine distribution, and varying views on effectiveness and the most appropriate responses. Nonetheless, respondents appear overall more optimistic, although there is still considerable uncertainty.
  • We’ve interpreted the results as best we can given our knowledge of the respondents and what they told us, and added in our own insights where relevant.
  • Inevitably, this is a subjective exercise, albeit based on 144 industry respondents’ views.
  • Nonetheless, we hope that it brings you additional insights to the many that you already possess through your own experiences and access to data.
  • Finally, things continue to change fast. We will continue to track them.

Table of contents

  • Executive summary: Opportunities are in overdrive, but can telcos catch them?
  • High-level findings
  • Research background
  • Technology impacts: Automation, cloud and edge come of age
  • Network impacts: 5G is back
  • Enterprise sector impacts: Healthcare still leads
  • Consumer sector impacts: Mojo aplenty, money – not so much
  • Leadership impacts: good talking, but enough walking?

Enter your details below to request an extract of the report

The state of the art on work from home propositions

=======================================================================================

Download the additional file on the left for the PPT chart pack accompanying this report

=======================================================================================

WFH: From survival to strategy

The imposed shift to homeworking has divided many businesses. Some (including Facebook, Twitter, Slack, Microsoft, Indeed, AMEX, Mastercard) say they will never require office work again, whereas others are eager to bring back the personal element and re-introduce the “office dynamic”. The concept of ‘Zoom Fatigue’ has left some people pining for the office, and many companies find themselves on standby, aiming to reopen the offices to all staff during 2021.

A survey by Ipsos MORI found that the majority of people expect normality to return somewhere between six months to two years. One thing is apparent – the ability and timing to even consider a full return to work is uncertain.

Figure 1: Ipsos MORI survey of homeworkers in the UK

Ipsos Mori WFH survey

Source: Ipsos MORI

Enter your details below to request an extract of the report

When the lockdowns started, uncertainty caused paralysis to strategic initiatives as budgets diverted towards creating a Work From Home (WFH) culture. Survival became the priority for businesses, delaying planned spend on corporate connectivity and networking. That same survival instinct saw telcos and suppliers react and reposition products and services toward remote work.

As WFH continued throughout the pandemic various advantages came to the fore, such as reduction in pollution from travel and the ability to hire great talent which may not be located near a corporate office. Businesses started or accelerated a journey of massive (and sometimes painful) transformation but, from that, have either accelerated or embarked on a digital transformation journey. The gains in efficiency and business opportunity have the potential to be significant. WFH is no longer an approach to survival but instead, part of a broader strategy to optimise operations across a

increasingly complex physical and digital worlds. This growing need across all enterprises and consumers is one of the key elements within STL’s vision of the Coordination Age.

A hybrid approach is here to stay

Homeworking must continue for some time to come as we wait for the pandemic to subside. As we have adopted a homeworking culture, albeit forced upon us, the investments in people, technologies and processes have already been committed. Although there is much conflicting opinion about the long-term outcomes, there is no looking back. The workplace has transformed, and the connectivity and business enablement products to support it have become commonplace.

There are three considerations which will continue to drive the support and growth of WFH.

  1. Covid-19 does not have a defined end. The uncertainty and unfortunate lengthy road to fully managing the virus means that businesses will need to continue efforts towards supporting a large amount of remote work.
  2. Remaining relevant. Many businesses will embrace a no-office, online-only culture (including typical storefronts) in response to changing customer and employee preferences. To do business in such an environment will require the adoption of the latest online tools and practices.
  3. Investment in digital transformation. Before Covid-19 and independent to any prior appetite for home working, digital transformation has already led many businesses to adopt cloud services, online collaboration tools and uCaaS solutions for voice and video. It is now generally accepted that Covid-19 has accelerated and rapidly matured the integration of these solutions into many businesses. According to BT, the “technology/digital transformation journey” in the UK has been sped up by almost 5.5 years.

The support of WFH, fully or hybrid, is therefore strategic and something likely to feature in business plans for the foreseeable future. Even when offices do eventually begin to fill up again, work from home will transition and merge into the “work from anywhere” culture.

Telcos are in a unique position to provide all the connectivity and services required to assist in these projects, but to do that they need to offer appropriately positioned solutions. As consumer and business connectivity become intertwined, it creates a large area of uncertainty for businesses. As both consumer and business connectivity are core competencies for telcos, bringing the two together is the next natural step.

The telco role: An opportunity or obligation?

The adaptation of businesses towards increased homeworking is, of course, complex and touches nearly every part of the business, from people to processes and technology. Almost every business function will have invested considerable time and effort towards establishing new ways of working. In many cases, this would result in a change to the supporting technologies.

Underpinning all of this is a large assumption that each employee will be able to reliably connect to the new virtual business environment from wherever they want, and the technology will just work. To all but the most technically advanced businesses, the homeworker’s personal connectivity is just that – personal – and not an area that many businesses can currently manage.

The telco is in a unique position when it comes to WFH as it can touch every part of the service delivery chain. With many businesses unable to address the broad spectrum of WFH needs, the opportunity for telcos is to offer the enabling services. Telco solutions must now support businesses by providing the right mix of physical connectivity and enablement services.

Figure 2: The telco touchpoints in WFH service delivery

The touch points in telco WFH service delivery

Source: STL Partners

Telcos have had an obligation to provide continued service to businesses and homes, throughout the pandemic. Universal service obligations needed to be maintained while national charters to keep the country connected were agreed. When the pandemic started, the demand for connectivity within the business segment shifted to the consumer segment and telcos had to respond.

Businesses initially froze all internal connectivity projects and focused on the remote workforce — this impacted Q2 revenues in telcos’ business segments. At the same time telcos did everything they could to make the transition as easy as possible, removing data limits and speed caps and providing free trials of collaboration and communications tools. More detail is provided in STL Partners review of the initial telco responses.

Figure 3: Liberty Global Q3 2020 results illustrate the impact to the business segment

Liberty Global Q320 results

Source: Liberty Global

Eventually IT infrastructure projects re-started. Businesses with significant office-based operations (as opposed to, e.g. manufacturing) applied new focus on creating more flexible and agile networks which can support mass WFH. The dependency on digital collaboration and ensuring that homeworkers can work without disruption has now become a high priority. A Q3 improvement in business spending is partly down to collaboration enabling technologies creating new opportunities for telcos – to address the shifts from legacy business spend on connecting large sites towards a more distributed concept where households connectivity is both personal and business focused.

Consumer connectivity products must now simply articulate the support for all household needs, including WFH. Business products must enable the agility a business needs to adapt to any future changes, while easily embracing their employees’ consumer connectivity.

 

Table of Contents

  • Executive Summary
    • A six point plan for embracing WFH opportunities
    • How telcos responded to ‘work going home’ in 2020
    • Two essential areas in need of development
    • What next: Considerations for different types of telco
  • Introduction
    • WFH: From survival to strategy
    • A hybrid approach is here to stay
    • The telco role: An opportunity or obligation?
    • Embracing the consumer architecture
  • The WFH journey: From initial responses to strategic opportunities
    • Uncoordinated connectivity: The initial stakeholder responses
    • Intelligent networking for WFH
    • Long term WFH: The telco opportunity
  • Telco WFH propositions today
    • How telcos are positioning WFH services
    • Consumer broadband: Overlay services for the household
    • Dedicated WFH: Made-to-measure
    • WFH as part of wider transformation efforts
  • Conclusion and recommendations
    • The innovation opportunity

Enter your details below to request an extract of the report

Consumer strategy: What should telcos do?

Globally, telcos are pursuing a wide variety of strategies in the consumer market, ranging from broad competition with the major Internet platforms to a narrow focus on delivering connectivity.

Some telcos, such as Orange France, Telefónica Spain, Reliance Jio and Rakuten Mobile, are combining connectivity with an array of services, such as messaging, entertainment, smart home, financial services and digital health propositions. Others, such as Three UK, focus almost entirely on delivering connectivity, while many sit somewhere in between, targeting a single vertical market, in addition to connectivity. AT&T is entertainment-orientated, while Safaricom is financial services-focused.

This report analyses the consumer strategies of the leading telcos in the UK and the Brazil – two very different markets. Whereas the UK is a densely populated, English-speaking country, Brazil has a highly-dispersed population that speaks Portuguese, making the barriers to entry higher for multinational telecoms and content companies.

By examining these two telecoms markets in detail, this report will consider which of these strategies is working, looking, in particular, at whether a halfway-house approach can be successful, given the economies of scope available to companies, such as Amazon and Google, that offer consumers a broad range of digital services. It also considers whether telcos need to be vertically-integrated in the consumer market to be successful. Or can they rely heavily on partnerships with third-parties? Do they need their own distinctive service layer developed in-house?

In light of the behavourial changes brought about by the pandemic, the report also considers whether telcos should be revamping their consumer propositions so that they are more focused on the provision of ultra-reliable connectivity, so people can be sure to work from home productively. Is residential connectivity really a commodity or can telcos now charge a premium for services that ensure a home office is reliably and securely connected throughout the day?

A future STL Partners report will explore telcos’ new working from home propositions in further detail.

Enter your details below to request an extract of the report

The UK market: Convergence is king

The UK is one of the most developed and competitive telecoms markets in the world. It has a high population density, with 84% of its 66 million people living in urban areas, according to the CIA Factbook. There are almost 272 people for every square kilometre, compared with an average of 103 across Europe. For every 100 people, there are 48 fixed lines and 41 broadband connections, while the vast majority of adults have a mobile phone. GDP per capita (on a purchasing power parity basis) is US$ 48,710, compared with US$ 65,118 in the US (according to the World Bank).

The strength of the state-funded public service broadcaster, the BBC, has made it harder for private sector players to make money in the content market. The BBC delivers a large amount of high-quality advertising-free content to anyone in the UK who pays the annual license fee, which is compulsory to watch television.

In the UK, the leading telcos have mostly eschewed expansion into the broader digital services market. That reflects the strong position of the leading global Internet platforms in the UK, as well as the quality of free-to-air television, and the highly competitive nature of the UK telecoms market – UK operators have relatively low margins, giving them little leeway to invest in the development of other digital services.

Figure 1 summarises where the five main network operators (and broadband/TV provider Sky) are positioned on a matrix mapping degree of vertical integration against the breadth of the proposition.

Most UK telcos have focused on the provision of connectivity

UK telco B2C strategies

Source: STL Partners

Brazil: Land of new opportunities

Almost as large as the US, Brazil has a population density is just 25 people per square kilometre – one tenth of the total UK average population density. Although 87% of Brazil’s 212 million people live in urban areas, according to the CIA Fact book, that means almost 28 million people are spread across the country’s rural communities.

By European standards, Brazil’s fixed-line infrastructure is relatively sparse. For every 100 people, Brazil has 16 fixed lines, 15 fixed broadband connections and 99 mobile connections. Its GDP per capita (on a purchasing power parity basis) is US$ 15,259 – about one third of that in the UK. About 70% of adults had a bank account in 2017, according to the latest World Bank data. However, only 58% of the adult population were actively using the account.

A vast middle-income country, Brazil has a very different telecoms market to that of the UK. In particular, network coverage and quality continue to be important purchasing criteria for consumers in many parts of the country. As a result, Oi, one of the four main network operators, became uncompetitive and entered a bankruptcy restructuring process in 2016. It is now hoping to to sell its sub-scale mobile unit for at least 15 billion reais (US$ 2.8 billion) to refocus the company on its fibre network. The other three major telcos, Vivo (part of Telefónica), Claro (part of América Móvil) and TIM Brazil, have made a joint bid to buy its mobile assets.

For this trio, opportunities may be opening up. They could, for example, play a key role in making financial services available across Brazil’s sprawling landmass, much of which is still served by inadequate road and rail infrastructure. If they can help Brazil’s increasingly cash-strapped consumers to save time and money, they will likely prosper. Even before COVID-19 struck, Brazil was struggling with the fall-out from an early economic crisis.

At the same time, Brazil’s home entertainment market is in a major state of flux. Demand for pay television, in particular, is falling away, as consumers seek out cheaper Internet-based streaming options.

All of Brazil’s major telcos are building a broad consumer play

Brazil telco consumer market strategy overview

Source: STL Partners

Table of contents

  • Executive Summary
  • Introduction
    • The UK market: Convergence is king
    • BT: Trying to be broad and deep
    • Virgin Media: An aggregation play
    • O2 UK: Changing course again
    • Vodafone: A belated convergence play
    • Three UK: Small and focused
    • Takeaways from the UK market: Triple play gridlock
  • Brazil: Land of new opportunities
    • The Brazilian mobile market
    • The Brazilian fixed-line market
    • The Brazilian pay TV market
    • The travails of Oi
    • Vivo: Playing catch-up in fibre
    • Telefónica’s financial performance
    • América Móvil goes broad in Brazil
    • TIM: Small, but perfectly formed?
    • Takeaways from the Brazilian market: A potentially treacherous transition
  • Index

Enter your details below to request an extract of the report

SK Telecom: Lessons in 5G, AI, and adjacent market growth

SK Telecom’s strategy

SK Telecom is the largest mobile operator in South Korea with a 42% share of the mobile market and is also a major fixed broadband operator. It’s growth strategy is focused on 5G, AI and a small number of related business areas where it sees the potential for revenue to replace that lost from its core mobile business.

By developing applications based on 5G and AI it hopes to create additional revenue streams both for its mobile business and for new areas, as it has done in smart home and is starting to do for a variety of smart business applications. In 5G it is placing an emphasis on indoor coverage and edge computing as basis for vertical industry applications. Its AI business is centred around NUGU, a smart speaker and a platform for business applications.

Its other main areas of business focus are media, security, ecommerce and mobility, but it is also active in other fields including healthcare and gaming.

The company takes an active role internationally in standards organisations and commercially, both in its own right and through many partnerships with other industry players.

It is a subsidiary of SK Group, one of the largest chaebols in Korea, which has interests in energy and oil. Chaebols are large family-controlled conglomerates which display a high level and concentration of management power and control. The ownership structures of chaebols are often complex owing to the many crossholdings between companies owned by chaebols and by family members. SK Telecom uses its connections within SK Group to set up ‘friendly user’ trials of new services, such as edge and AI

While the largest part of the business remains in mobile telecoms, SK Telecom also owns a number of subsidiaries, mostly active in its main business areas, for example:

  • SK Broadband which provides fixed broadband (ADSL and wireless), IPTV and mobile OTT services
  • ADT Caps, a securitybusiness
  • IDQ, which specialises in quantum cryptography (security)
  • 11st, an open market platform for ecommerce
  • SK Hynixwhich manufactures memory semiconductors

Few of the subsidiaries are owned outright by SKT; it believes the presence of other shareholders can provide a useful source of further investment and, in some cases, expertise.

SKT was originally the mobile arm of KT, the national operator. It was privatised soon after establishing a cellular mobile network and subsequently acquired by SK Group, a major chaebol with interests in energy and oil, which now has a 27% shareholding. The government pension service owns a 11% share in SKT, Citibank 10%, and 9% is held by SKT itself. The chairman of SK Group has a personal holding in SK Telecom.

Following this introduction, the report comprises three main sections:

  • SK Telecom’s business strategy: range of activities, services, promotions, alliances, joint ventures, investments, which covers:
    • Mobile 5G, Edge and vertical industry applications, 6G
    • AIand applications, including NUGU and Smart Homes
    • New strategic business areas, comprising Media, Security, eCommerce, and other areas such as mobility
  • Business performance
  • Industrial and national context.

Enter your details below to download an extract of the report

Overview of SKT’s activities

Network coverage

SK Telecom has been one of the earliest and most active telcos to deploy a 5G network. It initially created 70 5G clusters in key commercial districts and densely populated areas to ensure a level of coverage suitable for augmented reality (AR) and virtual reality (VR) and plans to increase the number to 240 in 2020. It has paid particular attention to mobile (or multi-access) edge computing (MEC) applications for different vertical industry sectors and plans to build 5G MEC centres in 12 different locations across Korea. For its nationwide 5G Edge cloud service it is working with AWS and Microsoft.

In recognition of the constraints imposed by the spectrum used by 5G, it is also working on ensuring good indoor 5G coverage in some 2,000 buildings, including airports, department stores and large shopping malls as well as small-to-medium-sized buildings using distributed antenna systems (DAS) or its in-house developed indoor 5G repeaters. It also is working with Deutsche Telekom on trials of the repeaters in Germany. In addition, it has already initiated activities in 6G, an indication of the seriousness with which it is addressing the mobile market.

NUGU, the AI platform

It launched its own AI driven smart speaker, NUGU in 2016/7, which SKT is using to support consumer applications such as Smart Home and IPTV. There are now eight versions of NUGU for consumers and it also serves as a platform for other applications. More recently it has developed several NUGU/AI applications for businesses and civil authorities in conjunction with 5G deployments. It also has an AI based network management system named Tango.

Although NUGU initially performed well in the market, it seems likely that the subsequent launch of smart speakers by major global players such as Amazon and Google has had a strong negative impact on the product’s recent growth. The absence of published data supports this view, since the company often only reports good news, unless required by law. SK Telecom has responded by developing variants of NUGU for children and other specialist markets and making use of the NUGU AI platform for a variety of smart applications. In the absence of published information, it is not possible to form a view on the success of the NUGU variants, although the intent appears to be to attract young users and build on their brand loyalty.

It has offered smart home products and services since 2015/6. Its smart home portfolio has continually developed in conjunction with an increasing range of partners and is widely recognised as one of the two most comprehensive offerings globally. The other being Deutsche Telekom’s Qivicon. The service appears to be most successful in penetrating the new build market through the property developers.

NUGU is also an AI platform, which is used to support business applications. SK Telecom has also supported the SK Group by providing new AI/5G solutions and opening APIs to other subsidiaries including SK Hynix. Within the SK Group, SK Planet, a subsidiary of SK Telecom, is active in internet platform development and offers development of applications based on NUGU as a service.

Smart solutions for enterprises

SKT continues to experiment with and trial new applications which build on its 5G and AI applications for individuals (B2C), businesses and the public sector. During 2019 it established B2B applications, making use of 5G, on-prem edge computing, and AI, including:

  • Smart factory(real time process control and quality control)
  • Smart distribution and robot control
  • Smart office (security/access control, virtual docking, AR/VRconferencing)
  • Smart hospital (NUGUfor voice command for patients, AR-based indoor navigation, facial recognition technology for medical workers to improve security, and investigating possible use of quantum cryptography in hospital network)
  • Smart cities; e.g. an intelligent transportation system in Seoul, with links to vehicles via 5Gor SK Telecom’s T-Map navigation service for non-5G users.

It is too early to judge whether these B2B smart applications are a success, and we will continue to monitor progress.

Acquisition strategy

SK Telecom has been growing these new business areas over the past few years, both organically and by acquisition. Its entry into the security business has been entirely by acquisition, where it has bought new revenue to compensate for that lost in the core mobile business. It is too early to assess what the ongoing impact and success of these businesses will be as part of SK Telecom.

Acquisitions in general have a mixed record of success. SK Telecom’s usual approach of acquiring a controlling interest and investing in its acquisitions, but keeping them as separate businesses, is one which often, together with the right management approach from the parent, causes the least disruption to the acquired business and therefore increases the likelihood of longer-term success. It also allows for investment from other sources, reducing the cost and risk to SK Telecom as the acquiring company. Yet as a counterpoint to this, M&A in this style doesn’t help change practices in the rest of the business.

However, it has also shown willingness to change its position as and when appropriate, either by sale, or by a change in investment strategy. For example, through its subsidiary SK Planet, it acquired Shopkick, a shopping loyalty rewards business in 2014, but sold it in 2019, for the price it paid for it. It took a different approach to its activity in quantum technologies, originally set up in-house in 2011, which it rolled into IDQ following its acquisition in 2018.

SKT has also recently entered into partnerships and agreements concerning the following areas of business:

 

Table of Contents

  • Executive Summary
  • Introduction and overview
    • Overview of SKT’s activities
  • Business strategy and structure
    • Strategy and lessons
    • 5G deployment
    • Vertical industry applications
    • AI
    • SK Telecom ‘New Business’ and other areas
  • Business performance
    • Financial results
    • Competitive environment
  • Industry and national context
    • International context

Enter your details below to download an extract of the report

Reliance Unlimit: How to build a successful IoT ecosystem

Reliance Unlimit’s success so far

Unlimit, Reliance Jio’s standalone IoT business in India, established in 2016, understood from the start that the problem with the IoT wasn’t the availability of technology, but how to quickly pull it all together into a clear, affordable solutions for the end customer. The result is that less than four years later, it has deployed more than 35,000 end-to-end IoT projects for a prestigious portfolio of customers, including Nissan Motor, MG Motor, Bata, DHL, GSK and Unilever. To meet their varying and evolving needs, Unlimit had built a IoT ecosystem of almost 600 partner companies by the end of 2019. Of these, nearly 100 are fully certified partners, with which Unlimit co-innovates solutions tailored to the Indian market.

Enter your details below to download an extract of the report

The state of the IoT: Balancing cost and complexity

In 1968, Theodore Paraskevakos, a Greek American inventor and businessman, explored the idea of making two machines communicate to each other. He first developed a system for transmitting the caller’s number to the receiver’s device. Building on this experiment, in 1977 he founded Metretek Inc, a company that conducted commercial automatic meter reading, which is essentially today’s commercial smart meter. From then, the world of machine to machine communications (M2M) developed rapidly. The objective was mainly to remotely monitor devices in order to understand conditions and performance. The M2M world was strongly telecommunications-oriented and focused on solving specific business problems. Given this narrow focus, there was little diversity in devices, data sets were specific to one or two measurements, and the communications protocols were well known. Given this context, it is fair to describe first-generation M2M solutions as a siloed, with little – if any – interaction with other data and solutions.

The benefits and challenges of the IoT

The purpose of the Internet of Things (IoT) is to open those silos and incorporate solution designers and developers into the operating environment. In this evolved environment, there might be several applications and solutions, each delivering a unique operational benefit. Each of those solutions require different devices, which produce different data. And those devices require life cycle management, the data needs to be analysed to inform better decisions, and automation integrated to improve efficiency in the operational environment. The communication methods between those devices can also vary significantly, depending on the environment, where the data is, and the type of applications and intelligence required. Finally, all this needs to run securely.

Therefore, the IoT has opened the silos, but it has brought complexity. The question is then whether this complexity is worth it for the operational benefits.

There are several studies highlighting the advantages of IoT solutions. The recent Microsoft IoT Signals publication, which surveys over 3000 decision makers in companies operating across different sectors, clearly demonstrates the value that IoT is bringing to organisations. The top three benefits are:

  • 91% of respondents claim that the IoT has increased efficiency
  • 91% of respondents claim that the IoT has increased yield
  • 85% of respondents claim that the IoT has increased quality.

The sectors leading IoT adoption

The same study highlights how these benefits are materialising in different business sectors. According to this study – and many others – manufacturing is seen as a top adopter of IoT solutions, as also highlighted in STL Partners research on the Industrial IoT.

Automotive, supply chain and logistics are other sectors that have widely adopted the IoT. Their leadership comes from a long M2M heritage, since telematics was a core application of M2M, and is an important part of the supply chain and logistics process.

The automotive sector’s early adoption of IoT was also driven by regulatory initiatives in different parts of the world, for instance to support remotely monitored emergency services in case of accidents (e.g. EU eCall). To enable this, M2M SIMs were embedded in cars, and only activated in the case of an accident, sending a message to an emergency centre. From there, the automotive industry and mobile network operators gradually developed a broader range of applications, culminating in the concept of connected cars. The connected car is much more sophisticated than a single emergency SIM – it is an IoT environment in which an array of sensors is gathering different data, sharing that data externally in various forms of V2X settings, supporting in-vehicle infotainment, and also enabling semiautonomous mobility. Sometime in the future, this will mature into fully autonomous mobility.

The complexity of an IoT solution

The connected car clearly represents the evolution from siloed M2M solutions to the IoT with multiple interdependent data sources and solutions. Achieving this has required the integration of various technologies into an IoT architecture, as well as the move towards automation and prediction of events, which requires embedding advanced analytics and AI technology frameworks into the IoT stack.

High level view of an IoT architecture

Overview of IoT architecture

Source: Saverio Romeo, STL Partners

There are five levels on an IoT architecture:

  1. The hardware level includes devices, sensors, gateways and hardware development components such as microcontrollers.
  2. The communication level includes the different types of IoT connectivity (cellular, LP-WAN, fixed, satellite, short-range wireless and others) and the communication protocols used in those forms of connectivity.
  3. The middleware software backend level is a set of software layers that are traditionally called an IoT platform. A high-level breakdown of the IoT platform includes a connectivity management layer, a device management layer, and data management and orchestration, data analytics and visualisations layers.
  4. The application level includes application development enablement tools and the applications themselves. Those tools enable the development of applications using machine-generated data and various other sources of data –all integrated by the IoT platform. It also includes applications that use results of these analytics to enable remote and automated actions on IoT devices.
  5. Vertically across these levels, there is a security layer. Although this is simplified into a single vertical layer, in practice there are separate security features integrated into IoT solutions at each layer of the architecture. Those features work together to offer layer-to-layer and end-to-end security. This is a complex process that required a detailed use of security-by-design methodology.

The IoT architecture is therefore composed of different technological parts that need to be integrated in order to work correctly in the different circumstances of potential deployment. The IoT architecture also needs to enable scalability supporting the expansion of a solution in terms of number of devices and volume and types of data. Each architectural layer is essential for the IoT solution to work, and they must interact with each other harmoniously, but each requires different technological expertise and skills.

An organisation that wants to offer end-to-end IoT solutions must therefore make a strategic choice between “in-house” IoT architecture development, or form strategic partnerships with existing IoT technology platform providers, and integrate their solutions into a coherent architecture to support an IoT ecosystem.

In the following sections of this report, we discuss Unlimit’s decision to take an ecosystem approach to building its IoT business, and the steps it took to get where it is today.

Table of contents

  • Executive Summary
    • Four lessons from Unlimit on building IoT ecosystems
    • How Unlimit built a successful IoT ecosystem
    • What next?
  • The state of the IoT: Balancing cost and complexity
    • The benefits and challenges of the IoT
    • The sectors leading IoT adoption
    • The complexity of an IoT solution
    • The nature of business ecosystems
  • How Unlimit built a successful IoT business
    • So far, Unlimit looks like a success
    • How will Unlimit sustain leadership and growth?
  • Lessons from Unlimit’s experience

Enter your details below to download an extract of the report

The changing consumer landscape: Telco strategies for success

Winning in the evolving “in home” consumer market

COVID-19 is accelerating significant and lasting changes in consumer behaviours as the majority of the population is being implored to stay at home. As a result, most people now work remotely and stay connected with colleagues, friends, and family via video conferencing. Consumer broadband and telco core services are therefore in extremely high demand and, coupled with the higher burden on the network, consumers have high expectations and dependencies on quality connectivity.

Furthermore, we found that people of all ages (including non-digital natives) are becoming more technically aware. This means they may be willing to purchase more services beyond core connectivity from their broadband provider. At the same time, their expectations on performance are rising. Consumers have a better understanding of the products on offer and, for example, expect Wi-Fi to deliver quoted broadband speeds throughout the house and not just in proximity to the router.

As a result of this changing landscape, there are opportunities, but also challenges that operators must overcome to better address consumers, stay relevant in the market, and win “in the home”.

This report looks at the different strategies telcos can pursue to win “in the home” and address the changing demands of consumers. It draws on an interview programme with eight operators, as well as a survey of more than 1100+ consumers globally . As well as canvassing consumers’ high level views of telcos and their services, the survey explores consumer willingness to buy cybersecurity services from telcos in some depth.

Enter your details below to download an extract of the report

With increasing technical maturity comes an increasingly demanding market

Consumers are increasing in technical maturity

The consumer market as a whole is becoming much more digital. Over the past decade there has been a big shift towards online and self-service models for B2C services (e.g. ecommerce, online banking, automated chatbots, video streaming). This reflects the advent of the Coordination Age – connecting people to machines, information, and things – and the growing technical maturity of the consumer market.

COVID-19 has been a recent, but significant, driver in pushing consumers towards a more digital age, forcing the use of video conferencing and contactless interactions. Even people who are not considered digitally native are becoming increasingly tech savvy and tech capable customers.

Cisco forecasts that, between 2018 and 2023, the number of Internet users globally will increase from 51% to 66% . It has also forecast an increase in data volumes per capita per month from 1.5GB in 2017 to 9.7GB in 2022 . Depending on the roll out of 5G in different markets, this number may increase significantly as demand for mobile data increases to meet the potential increases in supply.

Furthermore, in our survey of 1,100+ consumers globally, 33% of respondents considered themselves avid users and 51% considered themselves moderate users of technology. Only 16% of the population felt they were light users, using technology only when essential for a limited number of use cases and needing significant support when purchasing and implementing new technology-based solutions.

Though this did not vary significantly by region or existing spend, it did vary (as would be expected) by age – 51% of respondents aged between 25 and 30 considered themselves avid users of technology, while only 18% of respondents over 50 said the same. Nevertheless, even within the 50+ segment, 55% considered themselves moderate users of technology.

Self-proclaimed technical maturity varies significantly by age

Source: STL Partners consumer survey analysis (n=1,131)

The growing technical maturity of consumers suggests a larger slice of the market will be ready and willing to adopt digital solutions from a telco, providing an opportunity for potential growth in the consumer market.

Consumers have higher expectations on telco services

Coupled with the increasing technical maturity comes an increase in consumer expectations. This makes the increasing technical maturity a double edged sword – more consumers will be ready to adopt more digital solutions but, with a better understanding of what’s on offer, they can also be more picky about what they receive and more demanding about performance levels that can be achieved.

An example of this is in home broadband. It is no longer sufficient to deliver quoted throughput speeds only within proximity to the router. A good Wi-Fi connection must now permeate throughout the house, so that high-quality video content and video calls can be streamed from any room without any drop in quality or connection. It must also be able to handle an increasing number of connected devices – Cisco forecasts an increase from a global average of 1.2 to 1.6 connections per person between 2018 and 2023 .

Consumers are also becoming increasingly impatient. In all walks of life, whether it be dating, technology or experiences, consumers want instant gratification. Additionally, with the faster network speeds of 4G+, fibre, and eventually 5G, consumers want (and are used to) continuous video feeds, seamless streaming, and near instant downloads – buffering should be a thing of the past.

One of our interviewees, a Northern European operator, commented: “Consumers are not willing to wait, they want everything here, now, immediately. Whether it is web browsing or video conferencing or video streaming, consumers are increasingly impatient”.

However, these demands extend beyond telco core services and connectivity. In the context of digital maturity, a Mediterranean operator noted “There is increasing demand for more specialized services…there is more of a demand on value-added, rather than core, services”.

This presents new challenges and opportunities for operators seeking growth “in the home”. Telcos need to find a way to address these changing demands to stay relevant and be successful in the consumer market.

Table of Contents

  • Executive summary
  • Introduction
  • Growing demand for core broadband and value-added services
    • COVID-19 is driving significant, and likely lasting, change
    • With increasing technical maturity comes an increasingly demanding market
  • Telcos need new ways to stay relevant in B2C
    • The consumer market is both diverse and difficult to segment
    • Should telcos be looking beyond the triple play?
  • How can telcos differentiate in the consumer market?
    • Differentiate through price
    • Differentiate through new products beyond connectivity
    • Differentiate through reliability of service
  • Conclusions and key recommendations
  • Appendices
    • Appendix 1: Consumer segments used in the survey
    • Appendix 2: Cybersecurity product bundles used in the conjoint analysis

Request STL research insights overview pack

COVID-19: Impact on telco priorities

The goal of this research is to understand how telecoms operators’ investment priorities and investments are likely to change in response to COVID-19.  To do this, we collected more than 200 survey responses from participants in telecoms operators, telecoms vendors, and analysts and consultants and other groups. All responses are treated in strict personal and company confidence. Take the survey here.

This research builds on our initial research on the impact of the pandemic to the telecoms industry, COVID-19: Now, next and after, published in March 2020.

Background to the telco COVID-19 survey

The respondents were fairly evenly split between telcos, vendors, and ‘others’ (mainly analysts and consultants). This sample contained a higher proportion of European and American respondents than industry average, so is not fully globally representative. We have drawn out regional comparisons where possible.

Who took the survey?

COVID-19 survey respondents by company and region

Source: STL COVID-19 survey, 202 respondents, May 8th 2020

Meanwhile, 44% of respondents were C-Level/VP/SVP/Director level. Functionally, most respondents work in senior HQ and operational management areas.

What are their roles?

COVID-19 survey respondents by seniority

Source: STL COVID-19 survey, 202 respondents, May 8th 2020

How respondents perceive the risks from COVID-19

Respondents were positive on the prospects for most areas overall. We have taken a slightly more pessimistic view in our analysis of the survey results and the categorisation below to balance this bias and factor in future economic risk.

While not all activities we have categorised as “at risk” will necessarily be delayed, we believe that in some telcos there may be more pressure in these areas if the financial impact of COVID-19 is harsher than expected at the time of the survey. We expect that when Q2 results come out, many operators will have a clearer view of how the crisis will affect them financially – and those that are ahead of the curve in adopting technologies such as automation will be in a good position to accelerate their impact, those that are behind the curve may face a more difficult uphill battle.

A relative view of how respondents perceived the outlook for telcos in different business areas and verticals

COVID-19 survey perceived risks to business

Source: STL Partners analysis of COVID-19 survey, 202 respondents, May 8th 2020

Enter your details below to request an extract of the report

Notes on the research findings

  • The way research respondents perceive any given question is generally dependent on their current situation and knowledge. To get relevant answers, we asked all respondents if they were interested or involved in specific areas of interest (e.g. ‘consumer services’), and to not answer questions they couldn’t (e.g. for confidentiality reasons) or simply didn’t know or have a clear opinion.
  • We saw no evidence that respondents were ‘gaming’ the results to be favourable to their interests.
  • Results need to be seen in the context that telcos themselves vary widely in size, profitability and market outlook. For example, for some, 5G seems like a valid investment, whereas for others the conditions are currently much less promising. COVID-19 has clearly had some impact on these dynamics, and our analysis attempts to reflect this impact on the overall balance of opinions as well as some of the specific situations to bring greater nuance.
  • As of mid May 2020, the total economic impact of COVID-19 was probably less clear to the majority of the respondents than the operational and lifestyle changes it has brought. It is therefore likely that as telco results for Q2 start to be circulated, and before then internally to the telcos, differing pressures will arise than that existed at the time of this survey. The resulting intentions may therefore become more or less extreme than shown in this research, though the relative positions of different activities in the various maps of risk and opportunity may change less than the absolute levels shown here.
  • We’ve interpreted the results as best we can given our knowledge of the respondents and what they told us, and added in our own insights where relevant.
  • Inevitably, this is a subjective exercise, albeit based on 200+ industry respondents’ views.
  • Nonetheless, we hope that it brings you additional insights to the many that you already possess through your own experiences and access to data.
  • Finally, things continue to change fast. We will continue to track them.

Table of contents

  • Executive summary: What’s most likely to change?
  • Research background
  • Technology impacts: Implementing automation, cloud and edge
  • Network impacts: Making sense of divergent 5G viewpoints
  • Enterprise sector impacts: Healthcare and consumerisation
  • Consumer sector impacts: What will last?
  • Leadership impacts: Building on new foundations
  • What next?

Enter your details below to request an extract of the report

5G: Bridging hype, reality and future promises

The 5G situation seems paradoxical

People in China and South Korea are buying 5G phones by the million, far more than initially expected, yet many western telcos are moving cautiously. Will your company also find demand? What’s the smart strategy while uncertainty remains? What actions are needed to lead in the 5G era? What questions must be answered?

New data requires new thinking. STL Partners 5G strategies: Lessons from the early movers presented the situation in late 2019, and in What will make or break 5G growth? we outlined the key drivers and inhibitors for 5G growth. This follow on report addresses what needs to happen next.

The report is informed by talks with executives of over three dozen companies and email contacts with many more, including 21 of the first 24 telcos who have deployed. This report covers considerations for the next three years (2020–2023) based on what we know today.

“Seize the 5G opportunity” says Ke Ruiwen, Chairman, China Telecom, and Chinese reports claimed 14 million sales by the end of 2019. Korea announced two million subscribers in July 2019 and by December 2019 approached five million. By early 2020, The Korean carriers were confident 30% of the market will be using 5G by the end of 2020. In the US, Verizon is selling 5G phones even in areas without 5G services,  With nine phone makers looking for market share, the price in China is US$285–$500 and falling, so the handset price barrier seems to be coming down fast.

Yet in many other markets, operators progress is significantly more tentative. So what is going on, and what should you do about it?

Enter your details below to request an extract of the report

5G technology works OK

22 of the first 24 operators to deploy are using mid-band radio frequencies.

Vodafone UK claims “5G will work at average speeds of 150–200 Mbps.” Speeds are typically 100 to 500 Mbps, rarely a gigabit. Latency is about 30 milliseconds, only about a third better than decent 4G. Mid-band reach is excellent. Sprint has demonstrated that simply upgrading existing base stations can provide substantial coverage.

5G has a draft business case now: people want to buy 5G phones. New use cases are mostly years away but the prospect of better mobile broadband is winning customers. The costs of radios, backhaul, and core are falling as five system vendors – Ericsson, Huawei, Nokia, Samsung, and ZTE – fight for market share. They’ve shipped over 600,000 radios. Many newcomers are gaining traction, for example Altiostar won a large contract from Rakuten and Mavenir is in trials with DT.

The high cost of 5G networks is an outdated myth. DT, Orange, Verizon, and AT&T are building 5G while cutting or keeping capex flat. Sprint’s results suggest a smart build can quickly reach half the country without a large increase in capital spending. Instead, the issue for operators is that it requires new spending with uncertain returns.

The technology works, mostly. Mid-band is performing as expected, with typical speeds of 100–500Mbps outdoors, though indoor performance is less clear yet. mmWave indoor is badly degraded. Some SDN, NFV, and other tools for automation have reached the field. However, 5G upstream is in limited use. Many carriers are combining 5G downstream with 4G upstream for now. However, each base station currently requires much more power than 4G bases, which leads to high opex. Dynamic spectrum sharing, which allows 5G to share unneeded 4G spectrum, is still in test. Many features of SDN and NFV are not yet ready.

So what should companies do? The next sections review go-to-market lessons, status on forward-looking applications, and technical considerations.

Early go-to-market lessons

Don’t oversell 5G

The continuing publicity for 5G is proving powerful, but variable. Because some customers are already convinced they want 5G, marketing and advertising do not always need to emphasise the value of 5G. For those customers, make clear why your company’s offering is the best compared to rivals’. However, the draw of 5G is not universal. Many remain sceptical, especially if their past experience with 4G has been lacklustre. They – and also a minority swayed by alarmist anti-5G rhetoric – will need far more nuanced and persuasive marketing.

Operators should be wary of overclaiming. 5G speed, although impressive, currently has few practical applications that don’t already work well over decent 4G. Fixed home broadband is a possible exception here. As the objective advantages of 5G in the near future are likely to be limited, operators should not hype features that are unrealistic today, no matter how glamorous. If you don’t have concrete selling propositions, do image advertising or use happy customer testimonials.

Table of Contents

  • Executive Summary
  • Introduction
    • 5G technology works OK
  • Early go-to-market lessons
    • Don’t oversell 5G
    • Price to match the experience
    • Deliver a valuable product
    • Concerns about new competition
    • Prepare for possible demand increases
    • The interdependencies of edge and 5G
  • Potential new applications
    • Large now and likely to grow in the 5G era
    • Near-term applications with possible major impact for 5G
    • Mid- and long-term 5G demand drivers
  • Technology choices, in summary
    • Backhaul and transport networks
    • When will 5G SA cores be needed (or available)?
    • 5G security? Nothing is perfect
    • Telco cloud: NFV, SDN, cloud native cores, and beyond
    • AI and automation in 5G
    • Power and heat

Enter your details below to request an extract of the report

Cashing in on the end of cash

Introduction

As the rapid expansion of the digital economy threatens to sweep away coins and notes, telcos could be one of the major players in the transition to a cashless society. In the emerging Coordination Age (see STL Partners report: Telco 2030: New purpose, strategy and business models for the Coordination Age), telcos are well placed to help consumers and companies interact and transact far more efficiently and effectively than they have in the past.

This report explores what the global shift away from cash means for telcos and their partners. It identifies the factors driving the transition from cash payments to electronic transactions, considering the perspective of governments, banks, merchants and consumers, before explaining why cash might cling on at the margins.

The report then outlines the progress mobile operators are making in payments and financial services, drawing on examples from Africa, Asia and Europe. It also considers some of the partnerships telcos are striking with Internet players to help overcome some of the obstacles curbing greater use of mobile payment services, before drawing conclusions and making recommendations.

Enter your details below to request an extract of the report

This executive briefing builds on previous STL Partners reports including:

Calling time on cash

Despite the widespread adoption of the Internet and the subsequent rapid growth of online commerce, almost 90% of global retail1 still takes place at a physical point of sale in a store or at market stall. Although many traditional high streets and shopping malls are struggling, the value of point of sales transactions continues to grow, as an expanding middle class spends money at everything from coffee shops and restaurants to leisure centres and theme parks.

As you would expect, growth in developing markets tends to be markedly quicker than in developed. In India, point of sale transactions (using all payment mechanisms) are set to rise from US$893 billion in 2018 to US$1.36 trillion in value in 2022 (growth of 53%), according to leading payment processor Worldpay. Whereas in the U.S., point of sale transactions are set to grow from US$7.96 trillion in 2018 to US$10.33 trillion in value in 2022 (growth of 30%), according to Worldpay.

Even with the expansion of the digital economy, many transactions worldwide still involve the face-toface exchange of coins and/or notes. Cash is used to complete almost one third of payments (by value) at point of sale worldwide today, according to payments technology company Worldpay. But it predicts that figure will fall to 17% in 2022 – a dramatic change in just four years. Worldpay projects “that cash will be supplanted by debit cards as the leading point of sale payment method in 2019, falling to fourth place in 2022 behind debit cards, credit cards, and eWallets.”

These trends reflect the fact that using cash is expensive, cumbersome, inefficient and opaque. Cash may eventually become an anachronism. At least, that is what many large stakeholders in the public and private sectors are hoping. There are multiple drivers steering governments, banks, merchants, consumers and banks away from cash.

Why governments don’t like cash

Governments have several inter-related reasons for wanting to reduce the use of cash:

  • Tackle the black market: As cash is untraceable, it can facilitate crime, such as the trading of illegal or smuggled goods, and even terrorism. Governments periodically try and crack down on people who use large amounts of cash. In 2016, the government of India, for example, suddenly announced it was replacing 500 and 1,000 rupee notes (US$7.50 and US$15 respectively) with new notes in an effort to identify black marketers. People could exchange the old notes at banks, but those with large holdings had to account for the source of their cash. However, such measures only work up to a point: eradicating cash won’t eradicate crime. If necessary, criminals can always store and barter goods (e.g. drugs or guns), rather than hoarding cash.
  • Reduce corruption: In some countries, cash payments to and from the public sector are often vulnerable to being siphoned off by unscrupulous officials or other middlemen. Conversely, the digitisation of government benefit payments creates an electronic trail that reduces the risk of fraud and theft, and thereby ensures the money goes where it is intended. In 2010, when the Afghan National Police began using a mobile money service to pay salaries instead of cash, they discovered that 10 per cent of salaries were being paid to fictitious police officers, while some officers were not receiving their salaries in full, according to a report by CNN.
  • Greater transparency and less tax evasion: Cash-in-hand payments can result in lost tax revenue, as the recipients fail to declare their income or don’t pay VAT.
  • Reduce costs: If governments can distribute cash digitally, it can save both the public agency and the recipients both time and expenses: In Niger, converting a cash transfer programme to mobile money saved recipients over 20 hours, as they spent less time travelling and waiting for their transfers3.
  • Digital leadership: Some governments want to position their countries as digitally advanced and see the drive to get rid of cash as a means to digitise services and drive adoption of digital IDs, which are a key enabler of the digital vision.
  • Increase state control: Some authoritarian states are likely to see the digitisation of payments as an opportunity to enhance state power, or at least enhance security.

However, in many cases, governments have to distribute or accept cash because many of their citizens still lack bank accounts. More than 60 million unbanked adults globally still receive government transfers, wages or pensions in cash, while 230 million unbanked adults work in the private sector and get paid in cash only, according to the World Bank’s Global Findex Database Measuring Financial Inclusion and the Fintech Revolution 2017.

Banks and merchants find cash costly

But the biggest driver behind the decline of cash could simply be the costs of the underlying infrastructure and merchants’ growing reluctance to accept cash. For a small retailer, bar or coffee shop, cash consumes time – it needs to be counted and taken to the bank. It also poses a security risk, whereas digital payments automatically end up in the merchant’s bank account and are very unlikely to go missing.

Cash is also a burden for the financial services ecosystem, which has to make ATMs and bank branches available. In the U.K., the Access to Cash Review, a report published in March 2019, warned: “As we stand, we have a cash infrastructure which is fast becoming unsustainable, with largely fixed costs, but where income is declining fast. Britain’s cash infrastructure costs around £5 billion a year to run, paid for predominantly by the retail banks, and run mostly by commercial operators. Much of this cost is currently fixed, whether in physical cash sorting centres or ATMs. But as cash use declines, the economics of the current cash model are becoming seriously challenged.”

Consumers’ mixed feelings about cash

Although some consumers may want to use cash to avoid taxes and maintain privacy, there are several reasons why they too might favour digital payments. Every deposit, withdrawal, transfer or payment made digitally creates a recorded financial history. These transparent transaction records can help protect customers’ rights – they can help prove that they have paid for a specific product or service. Moreover, using digital payments, rather than cash, can help individuals build a credit history, which could make it easier to get a loan. Digital records should also help consumers to monitor and budget their spending, although some studies have found that some forms of digital payments, such as contactless payment cards, can result in consumers spending more than if they were solely reliant on cash.

In the developing world, where credit scores are scarce, merchants are turning to digital mechanisms to help consumers pay in instalments for appliances, such as TVs, radios, lighting, cooking stoves and solar water pumps (all of which can increase household and agricultural productivity). In Kenya, for example, SunCulture enables farmers to pay for solar-powered irrigation pumps in instalments via a mobile money service. As a result, they can improve their productivity and, ultimately, their incomes. Farmers who use SunCulture have reported an average 300% increase in crop yield per year, according to a study by the mobile trade group GSMA.

A vicious circle for cash

While Worldpay point of sale data show cash is in steady decline, there are good reasons to believe it may actually be under-estimating the speed at which other payment methods will take over. In many markets, cash is approaching a potentially decisive tipping point. With consumers ambivalent and governments, merchants and banks all favouring alternatives, cash is in the grip of a vicious circle:

  • The deregulation of the banking system is increasing competition and putting pressure on banks to cut costs and close branches.
  • Small businesses find that the closure of bank branches makes it more expensive and riskier to handle cash. In some cases, merchants stop accepting cash or give people incentives to pay digitally.
  • As fewer merchants accept cash, consumers become increasingly reliant on digital alternatives.
  • As people use cash less and less, they make fewer visits to ATMs and bank branches.
  • Banks continue to close ATMs and branches, making it increasingly hard for anyone to keep using cash. Once the cash infrastructure in a specific locality has gone, everyone living in that area really much has to go digital.

If this vicious circle kicks in, providers of mobile payment services need to be ready for a very sharp fall in the usage of cash. In practice, that will mean upgrading back-end systems so they can handle large numbers of simultaneous transactions, while also preparing for a fresh competitive onslaught from new entrants hungry for potentially valuable transaction data.

 

Table of contents

  • Executive Summary
  • Introduction
  • Calling time on cash
    • Why governments don’t like cash
    • Banks and merchants find cash costly
    • Consumers’ mixed feelings about cash
    • The rise of the electronic wallet
    • A vicious circle for cash
    • The convenience economy
    • Why cash might persist
  • Mobile operators’ financial services
    • M-Pesa makes mixed progress in Kenya
    • The importance of interoperability
    • Telcos as banks
  • Conversational commerce
  • Partnering with Internet players
    • Learning from China’s Internet platforms
    • Other partnerships between Internet players and telcos
  • Conclusions and recommendations

Enter your details below to request an extract of the report