Telco Cloud Deployment Tracker: Will vRAN eclipse pure open RAN?

Is vRAN good enough for now?

In this October 2022 update to STL Partners’ Telco Cloud Deployment Tracker, we present data and analysis on progress with deployments of vRAN and open RAN. It is fair to say that open RAN (virtualised AND disaggregated RAN) deployments have not happened at the pace that STL Partners and many others had forecast. In parallel, some very significant deployments and developments are occurring with vRAN (virtualised NOT disaggregated RAN). Is open RAN a networking ideal that is not yet, or never will be, deployed in its purest form?

In our Telco Cloud Deployment Tracker, we track deployments of three types of virtualised RAN:

  1. Open RAN / O-RAN: Open, disaggregated, virtualised / cloud-native, with baseband (BU) functions distributed between a Central Unit (CU: control plane functions) and Distributed Unit (DU: data plane functions)
  2. vRAN: Virtualised and distributed CU/DU, with open interfaces but implemented as an integrated, single-vendor platform
  3. Cloud RAN (C-RAN): Single-vendor, virtualised / centralised BU, or CU only, with proprietary / closed interfaces

Cloud RAN is the most limited form of virtualised RAN: it is based on porting part or all of the functionality of the legacy, appliance-based BU into a Virtual Machine (VM). vRAN and open RAN are much more significant, in both technology and business-model terms, breaking open all parts of the RAN to more competition and opportunities for innovation. They are also cloud-native functions (CNFs) rather than VM-based.

Enter your details below to request an extract of the report

2022 was meant to be the breakthrough year for open RAN: what happened?

  • Of the eight deployments of open RAN we were expecting to go live in 2022 (shown in the chart below), only three had done so by the time of writing.
  • Two of these were on the same network: Altiostar and Mavenir RAN platforms at DISH. The other was a converged Parallel Wireless 2G / 3G RAN deployment for Orange Central African Republic.
  • This is hardly the wave of 5G open RAN, macro-network roll-outs that the likes of Deutsche Telekom, Orange, Telefónica and Vodafone originally committed to for 2022. What has gone wrong?
  • Open RAN has come up against a number of thorny technological and operational challenges, which are well known to open RAN watchers:
    • integration challenges and costs
    • hardware performance and optimisation
    • immature ecosystem and unclear lines of accountability when things go wrong
    • unproven at scale, and absence of economies of scale
    • energy efficiency shortcomings
    • need to transform the operating model and processes
    • pressured 5G deployment and Huawei replacement timelines
    • absence of mature, open, horizontal telco cloud platforms supporting CNFs.
  • Over and above these factors, open RAN is arguably not essential for most of the 5G use cases it was expected to support.
  • This can be gauged by looking at some of the many open RAN trials that have not yet resulted in commercial deployments.

Global deployments of C-RAN, vRAN and open RAN, 2016 to 2023

Image shows global deployments of C-RAN, vRAN and open RAN, 2016 to 2023

Source: STL Partners

Previous telco cloud tracker releases and related research

Enter your details below to request an extract of the report

Telco Cloud Deployment Tracker: 5G core deep dive

Deep dive: 5G core deployments 

In this July 2022 update to STL Partners’ Telco Cloud Deployment Tracker, we present granular information on 5G core launches. They fall into three categories:

  • 5G Non-standalone core (5G NSA core) deployments: The 5G NSA core (agreed as part of 3GPP Release in December 2017), involves using a virtualised and upgraded version of the existing 4G core (or EPC) to support 5G New Radio (NR) wireless transmission in tandem with existing LTE services. This was the first form of 5G to be launched and still accounts for 75% of all 5G core network deployments in our Tracker.
  • 5G Standalone core (5G SA core) deployments: The SA core is a completely new and 5G-only core. It has a simplified, cloud-native and distributed architecture, and is designed to support services and functions such as network slicing, Ultra-Reliable Low-Latency Communications (URLLC) and enhanced Machine-Type Communications (eMTC, i.e. massive IoT). Our Tracker indicates that the upcoming wave of 5G core deployments in 2022 and 2023 will be mostly 5G SA core.
  • Converged 5G NSA/SA core deployments: this is when a dual-mode NSA and SA platform is deployed; in most cases, the NSA core results from the upgrade of an existing LTE core (EPC) to support 5G signalling and radio. The principle behind a converged NSA/SA core is the ability to orchestrate different combinations of containerised network functions, and automatically and dynamically flip over from an NSA to an SA configuration, in tandem – for example – with other features and services such as Dynamic Spectrum Sharing and the needs of different network slices. For this reason, launching a converged NSA/SA platform is a marker of a more cloud-native approach in comparison with a simple 5G NSA launch. Ericsson is the most commonly found vendor for this type of platform with a handful coming from Huawei, Samsung and WorkingGroupTwo. Albeit interesting, converged 5G NSA/SA core deployments remain a minority (7% of all 5G core deployments over the 2018-2023 period) and most of our commentary will therefore focus on 5G NSA and 5G SA core launches.

Enter your details below to request an extract of the report

75% of 5G cores are still Non-standalone (NSA)

Global 5G core deployments by type, 2018–23

  • There is renewed activity this year in 5G core launches since the total number of 5G core deployments so far in 2022 (effective and in progress) stands at 49, above the 47 logged in the whole of 2021. At the very least, total 5G deployments in 2022 will settle between the level of 2021 and the peak of 2020 (97).
  • 5G in whichever form now exists in most places where it was both in demand and affordable; but there remain large economies where it is yet to be launched: Turkey, Russia and most notably India. It also remains to be launched in most of Africa.
  • In countries with 5G, the next phase of launches, which will see the migration of NSA to SA cores, has yet to take place on a significant scale.
  • To date, 75% of all 5G cores are NSA. However, 5G SA will outstrip NSA in terms of deployments in 2022 and represent 24 of the 49 launches this year, or 34 if one includes converged NSA/SA cores as part of the total.
  • All but one of the 5G launches announced for 2023 are standalone; they all involve Tier-1 MNOs including Orange (in its European footprint involving Ericsson and Nokia), NTT Docomo in Japan and Verizon in the US.

The upcoming wave of SA core (and open / vRAN) represents an evolution towards cloud-native

  • Cloud-native functions or CNFs are software designed from the ground up for deployment and operation in the cloud with:​
  • Portability across any hardware infrastructure or virtualisation platform​
  • Modularity and openness, with components from multiple vendors able to be flexibly swapped in and out based on a shared set of compute and OS resources, and open APIs (in particular, via software ‘containers’)​
  • Automated orchestration and lifecycle management, with individual micro-services (software sub-components) able to be independently modified / upgraded, and automatically re-orchestrated and service-chained based on a persistent, API-based, ‘declarative’ framework (one which states the desired outcome, with the service chain organising itself to deliver the outcome in the most efficient way)​
  • Compute, resource, and software efficiency: as a concomitant of the automated, lean and logically optimal characteristics described above, CNFs are more efficient (both functionally and in terms of operating costs) and consume fewer compute and energy resources.​
  • Scalability and flexibility, as individual functions (for example, distributed user plane functions in 5G networks) can be scaled up or down instantly and dynamically in response to overall traffic flows or the needs of individual services​
  • Programmability, as network functions are now entirely based on software components that can be programmed and combined in a highly flexible manner in accordance with the needs of individual services and use contexts, via open APIs.​

Previous telco cloud tracker releases and related research

Each new release of the tracker is global, but is accompanied by an analytical report which focusses on trends in given regions from time to time:

Enter your details below to request an extract of the report

Why the consumer IoT is stuck in the slow lane

A slow start for NB-IoT and LTE-M

For telcos around the world, the Internet of Things (IoT) has long represented one of the most promising growth opportunities. Yet for most telcos, the IoT still only accounts for a low single digit percentage of their overall revenue. One of the stumbling blocks has been relatively low demand for IoT solutions in the consumer market. This report considers why that is and whether low cost connectivity technologies specifically-designed for the IoT (such as NB-IoT and LTE-M) will ultimately change this dynamic.

NB-IoT and LTE-M are often referred to as Massive IoT technologies because they are designed to support large numbers of connections, which periodically transmit small amounts of data. They can be distinguished from broadband IoT connections, which carry more demanding applications, such as video content, and critical IoT connections that need to be always available and ultra-reliable.

The initial standards for both technologies were completed by 3GPP in 2016, but adoption has been relatively modest. This report considers the key B2C and B2B2C use cases for Massive IoT technologies and the prospects for widespread adoption. It also outlines how NB-IoT and LTE-M are evolving and the implications for telcos’ strategies.

This builds on previous STL Partners’ research, including LPWA: Which way to go for IoT? and Can telcos create a compelling smart home?. The LPWA report explained why IoT networks need to be considered across multiple generations, including coverage, reliability, power consumption, range and bandwidth. Cellular technologies tend to be best suited to wide area applications for which very reliable connectivity is required (see Figure below).

IoT networks should be considered across multiple dimensions

IoT-networks-disruptive-analysis-stl-2021
Source: Disruptive Analysis

 

Enter your details below to request an extract of the report

The smart home report outlined how consumers could use both cellular and short-range connectivity to bolster security, improve energy efficiency, charge electric cars and increasingly automate appliances. One of the biggest underlying drivers in the smart home sector is peace of mind – householders want to protect their properties and their assets, as rising population growth and inequality fuels fear of crime.

That report contended that householders might be prepared to pay for a simple and integrated way to monitor and remotely control all their assets, from door locks and televisions to solar panels and vehicles.  Ideally, a dashboard would show the status and location of everything an individual cares about. Such a dashboard could show the energy usage and running cost of each appliance in real-time, giving householders fingertip control over their possessions. They could use the resulting information to help them source appropriate insurance and utility supply.

Indeed, STL Partners believes telcos have a broad opportunity to help coordinate better use of the world’s resources and assets, as outlined in the report: The Coordination Age: A third age of telecoms. Reliable and ubiquitous connectivity is a key enabler of the emerging sharing economy in which people use digital technologies to easily rent the use of assets, such as properties and vehicles, to others. The data collected by connected appliances and sensors could be used to help safeguard a property against misuse and source appropriate insurance covering third party rentals.

Do consumers need Massive IoT?

Whereas some IoT applications, such as connected security cameras and drones, require high-speed and very responsive connectivity, most do not. Connected devices that are designed to collect and relay small amounts of data, such as location, temperature, power consumption or movement, don’t need a high-speed connection.

To support these devices, the cellular industry has developed two key technologies – LTE-M (LTE for Machines, sometimes referred to as Cat M) and NB-IoT (Narrowband IoT). In theory, they can be deployed through a straightforward upgrade to existing LTE base stations. Although these technologies don’t offer the capacity, throughput or responsiveness of conventional LTE, they do support the low power wide area connectivity required for what is known as Massive IoT – the deployment of large numbers of low cost sensors and actuators.

For mobile operators, the deployment of NB-IoT and LTE-M can be quite straightforward. If they have relatively modern LTE base stations, then NB-IoT can be enabled via a software upgrade. If their existing LTE network is reasonably dense, there is no need to deploy additional sites – NB-IoT, and to a lesser extent LTE-M, are designed to penetrate deep inside buildings. Still, individual base stations may need to be optimised on a site-by-site basis to ensure that they get the full benefit of NB-IoT’s low power levels, according to a report by The Mobile Network, which notes that operators also need to invest in systems that can provide third parties with visibility and control of IoT devices, usage and costs.

There are a number of potential use cases for Massive IoT in the consumer market:

  • Asset tracking: pets, bikes, scooters, vehicles, keys, wallets, passport, phones, laptops, tablets etc.
  • Vulnerable persontracking: children and the elderly
  • Health wearables: wristbands, smart watches
  • Metering and monitoring: power, water, garden,
  • Alarms and security: smoke alarms, carbon monoxide, intrusion
  • Digital homes: automation of temperature and lighting in line with occupancy

In the rest of this report we consider the key drivers and barriers to take-up of NB-IoT and LTE-M for these consumer use cases.

Table of Contents

  • Executive Summary
  • Introduction
  • Do consumers need Massive IoT?
    • The role of eSIMs
    • Takeaways
  • Market trends
    • IoT revenues: Small, but growing
  • Consumer use cases for cellular IoT
    • Amazon’s consumer IoT play
    • Asset tracking: Demand is growing
    • Connecting e-bikes and scooters
    • Slow progress in healthcare
    • Smart metering gains momentum
    • Supporting micro-generation and storage
    • Digital buildings: A regulatory play?
    • Managing household appliances
  • Technological advances
    • Network coverage
  • Conclusions: Strategic implications for telcos

 

Enter your details below to request an extract of the report

Fixed wireless access growth: To 20% homes by 2025

=======================================================================================

Download the additional file on the left for the PPT chart pack accompanying this report

=======================================================================================

Fixed wireless access growth forecast

Fixed Wireless Access (FWA) networks use a wireless “last mile” link for the final connection of a broadband service to homes and businesses, rather than a copper, fibre or coaxial cable into the building. Provided mostly by WISPs (Wireless Internet Service Providers) or mobile network operators (MNOs), these services come in a wide range of speeds, prices and technology architectures.

Some FWA services are just a short “drop” from a nearby pole or fibre-fed hub, while others can work over distances of several kilometres or more in rural and remote areas, sometimes with base station sites backhauled by additional wireless links. WISPs can either be independent specialists, or traditional fixed/cable operators extending reach into areas they cannot economically cover with wired broadband.

There is a fair amount of definitional vagueness about FWA. The most expansive definitions include cheap mobile hotspots (“Mi-Fi” devices) used in homes, or various types of enterprise IoT gateway, both of which could easily be classified in other market segments. Most service providers don’t give separate breakouts of deployments, while regulators and other industry bodies report patchy and largely inconsistent data.

Our view is that FWA is firstly about providing permanent broadband access to a specific location or premises. Primarily, this is for residential wireless access to the Internet and sometimes typical telco-provided services such as IPTV and voice telephony. In a business context, there may be a mix of wireless Internet access and connectivity to corporate networks such as VPNs, again provided to a specific location or building.

A subset of FWA relates to M2M usage, for instance private networks run by utility companies for controlling grid assets in the field. These are typically not Internet-connected at all, and so don’t fit most observers’ general definition of “broadband access”.

Usually, FWA will be marketed as a specific service and package by some sort of network provider, usually including the terminal equipment (“CPE” – customer premise equipment), rather than allowing the user to “bring their own” device. That said, lower-end (especially 4G) offers may be SIM-only deals intended to be used with generic (and unmanaged) portable hotspots.
There are some examples of private network FWA, such as a large caravan or trailer park with wireless access provided from a central point, and perhaps in future municipal or enterprise cellular networks giving fixed access to particular tenant structures on-site – for instance to hangars at an airport.

Enter your details below to request an extract of the report

FWA today

Today, fixed-wireless access (FWA) is used for perhaps 8-9% of broadband connections globally, although this varies significantly by definition, country and region. There are various use cases (see below), but generally FWA is deployed in areas without good fixed broadband options, or by mobile-only operators trying to add an additional fixed revenue stream, where they have spare capacity.

Fixed wireless internet access fits specific sectors and uses, rather than the overall market

FWA Use Cases

Source: STL Partners

FWA has traditionally been used in sparsely populated rural areas, where the economics of fixed broadband are untenable, especially in developing markets without existing fibre transport to towns and villages, or even copper in residential areas. Such networks have typically used unlicensed frequency bands, as there is limited interference – and little financial justification for expensive spectrum purchases. In most cases, such deployments use proprietary variants of Wi-Fi, or its ill-fated 2010-era sibling WiMAX.

Increasingly however, FWA is being used in more urban settings, and in more developed market scenarios – for example during the phase-out of older xDSL broadband, or in places with limited or no competition between fixed-network providers. Some cellular networks primarily intended for mobile broadband (MBB) have been used for fixed usage as well, especially if spare capacity has been available. 4G has already catalysed rapid growth of FWA in numerous markets, such as South Africa, Japan, Sri Lanka, Italy and the Philippines – and 5G is likely to make a further big difference in coming years. These mostly rely on licensed spectrum, typically the national bands owned by major MNOs. In some cases, specific bands are used for FWA use, rather than sharing with normal mobile broadband. This allows appropriate “dimensioning” of network elements, and clearer cost-accounting for management.

Historically, most FWA has required an external antenna and professional installation on each individual house, although it also gets deployed for multi-dwelling units (MDUs, i.e. apartment blocks) as well as some non-residential premises like shops and schools. More recently, self-installed indoor CPE with varying levels of price and sophistication has helped broaden the market, enabling customers to get terminals at retail stores or delivered direct to their home for immediate use.

Looking forward, the arrival of 5G mass-market equipment and larger swathes of mmWave and new mid-band spectrum – both licensed and unlicensed – is changing the landscape again, with the potential for fibre-rivalling speeds, sometimes at gigabit-grade.

Enter your details below to request an extract of the report

Table of contents

  • Executive Summary
  • Introduction
    • FWA today
    • Universal broadband as a goal
    • What’s changed in recent years?
    • What’s changed because of the pandemic?
  • The FWA market and use cases
    • Niche or mainstream? National or local?
    • Targeting key applications / user groups
  • FWA technology evolution
    • A broad array of options
    • Wi-Fi, WiMAX and close relatives
    • Using a mobile-primary network for FWA
    • 4G and 5G for WISPs
    • Other FWA options
    • Customer premise equipment: indoor or outdoor?
    • Spectrum implications and options
  • The new FWA value chain
    • Can MNOs use FWA to enter the fixed broadband market?
    • Reinventing the WISPs
    • Other value chain participants
    • Is satellite a rival waiting in the wings?
  • Commercial models and packages
    • Typical pricing and packages
    • Example FWA operators and plans
  • STL’s FWA market forecasts
    • Quantitative market sizing and forecast
    • High level market forecast
  • Conclusions
    • What will 5G deliver – and when and where?
  • Index

5G: Bridging hype, reality and future promises

The 5G situation seems paradoxical

People in China and South Korea are buying 5G phones by the million, far more than initially expected, yet many western telcos are moving cautiously. Will your company also find demand? What’s the smart strategy while uncertainty remains? What actions are needed to lead in the 5G era? What questions must be answered?

New data requires new thinking. STL Partners 5G strategies: Lessons from the early movers presented the situation in late 2019, and in What will make or break 5G growth? we outlined the key drivers and inhibitors for 5G growth. This follow on report addresses what needs to happen next.

The report is informed by talks with executives of over three dozen companies and email contacts with many more, including 21 of the first 24 telcos who have deployed. This report covers considerations for the next three years (2020–2023) based on what we know today.

“Seize the 5G opportunity” says Ke Ruiwen, Chairman, China Telecom, and Chinese reports claimed 14 million sales by the end of 2019. Korea announced two million subscribers in July 2019 and by December 2019 approached five million. By early 2020, The Korean carriers were confident 30% of the market will be using 5G by the end of 2020. In the US, Verizon is selling 5G phones even in areas without 5G services,  With nine phone makers looking for market share, the price in China is US$285–$500 and falling, so the handset price barrier seems to be coming down fast.

Yet in many other markets, operators progress is significantly more tentative. So what is going on, and what should you do about it?

Enter your details below to request an extract of the report

5G technology works OK

22 of the first 24 operators to deploy are using mid-band radio frequencies.

Vodafone UK claims “5G will work at average speeds of 150–200 Mbps.” Speeds are typically 100 to 500 Mbps, rarely a gigabit. Latency is about 30 milliseconds, only about a third better than decent 4G. Mid-band reach is excellent. Sprint has demonstrated that simply upgrading existing base stations can provide substantial coverage.

5G has a draft business case now: people want to buy 5G phones. New use cases are mostly years away but the prospect of better mobile broadband is winning customers. The costs of radios, backhaul, and core are falling as five system vendors – Ericsson, Huawei, Nokia, Samsung, and ZTE – fight for market share. They’ve shipped over 600,000 radios. Many newcomers are gaining traction, for example Altiostar won a large contract from Rakuten and Mavenir is in trials with DT.

The high cost of 5G networks is an outdated myth. DT, Orange, Verizon, and AT&T are building 5G while cutting or keeping capex flat. Sprint’s results suggest a smart build can quickly reach half the country without a large increase in capital spending. Instead, the issue for operators is that it requires new spending with uncertain returns.

The technology works, mostly. Mid-band is performing as expected, with typical speeds of 100–500Mbps outdoors, though indoor performance is less clear yet. mmWave indoor is badly degraded. Some SDN, NFV, and other tools for automation have reached the field. However, 5G upstream is in limited use. Many carriers are combining 5G downstream with 4G upstream for now. However, each base station currently requires much more power than 4G bases, which leads to high opex. Dynamic spectrum sharing, which allows 5G to share unneeded 4G spectrum, is still in test. Many features of SDN and NFV are not yet ready.

So what should companies do? The next sections review go-to-market lessons, status on forward-looking applications, and technical considerations.

Early go-to-market lessons

Don’t oversell 5G

The continuing publicity for 5G is proving powerful, but variable. Because some customers are already convinced they want 5G, marketing and advertising do not always need to emphasise the value of 5G. For those customers, make clear why your company’s offering is the best compared to rivals’. However, the draw of 5G is not universal. Many remain sceptical, especially if their past experience with 4G has been lacklustre. They – and also a minority swayed by alarmist anti-5G rhetoric – will need far more nuanced and persuasive marketing.

Operators should be wary of overclaiming. 5G speed, although impressive, currently has few practical applications that don’t already work well over decent 4G. Fixed home broadband is a possible exception here. As the objective advantages of 5G in the near future are likely to be limited, operators should not hype features that are unrealistic today, no matter how glamorous. If you don’t have concrete selling propositions, do image advertising or use happy customer testimonials.

Table of Contents

  • Executive Summary
  • Introduction
    • 5G technology works OK
  • Early go-to-market lessons
    • Don’t oversell 5G
    • Price to match the experience
    • Deliver a valuable product
    • Concerns about new competition
    • Prepare for possible demand increases
    • The interdependencies of edge and 5G
  • Potential new applications
    • Large now and likely to grow in the 5G era
    • Near-term applications with possible major impact for 5G
    • Mid- and long-term 5G demand drivers
  • Technology choices, in summary
    • Backhaul and transport networks
    • When will 5G SA cores be needed (or available)?
    • 5G security? Nothing is perfect
    • Telco cloud: NFV, SDN, cloud native cores, and beyond
    • AI and automation in 5G
    • Power and heat

Enter your details below to request an extract of the report

5G strategies: Lessons from the early movers

What’s the best 5G strategy?

When we published the report 5G: The First Three Years in December 2018, we identified that most of the hype – from autonomous cars to surgeons operating from the beach – is at best several years from significant volume. There are no “killer apps” in sight. Telco growth from 5G deployments will be based on greater capacity, lower cost and customer willingness to buy.

If carrier revenue doesn’t rise, the pressure to cut costs will grow

For the last five years, carrier revenue has been almost flat in most countries and we believe this trend is likely to continue.

STL Partners forecasts less than 1% CAGR in telecoms revenues

Mobile and fixed revenue forecast to 2022Source: STL Partners

In our 5G Strategies report series, STL Partners set out to established what 5G actually offers that will enable carriers to make more money in the next few years.

It builds on STL Partners’ previous insights into 5G, including:

The report explores the most recent activities in 5G by operators, vendors, phone makers and chipmakers.

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

High-level takeaways from initial 5G deployments

This section provides a high-level overview of the current efforts and activities of select telcos around the world. Broadly, it shows that almost all are pushing ahead on 5G, some much faster than others.

  • Korea is the world’s most advanced 5G market, with two million Koreans having bought 5G phones by July.
    • Korea’s 3.5 GHz networks typically deliver download speeds of 100 – 500 Mbps. SK Telecom and KT are using Samsung equipment. LG Uplus is mostly Huawei. There is little evidence that either vendor has demonstrated superior performance. Korea’s government, supported by the operators, made a decision that speeding ahead on 5G would be valuable prestige and improve the Korean economy. Korea expects to have 200,000 radios in place by the end of 2019, compared with BT which anticipates fewer than 2,500.
  • China Mobile has confirmed Huawei’s estimate that the price of 5G phones will fall to under US$300 in 2020, which will stimulate a sharp increase in demand.
    • The Chinese and the Koreans are investing heavily in augmented and virtual reality and games for 5G. This will take time to mature.
  • Verizon has taken a radical approach to simplifying its core and transport network, partly in preparation for 5G but more generally to improve its cost of delivery. This simplification has allowed it to maintain and even cut some CAPEX investments while delivering performance improvements.
    • 5G mmWave in 28GHz works and often delivers a gigabit. The equipment is of modest size and cost. However, the apparent range of around 200 metres is disappointing (Verizon has not confirmed the range but there is evidence it is short). Verizon expects better range.
  • Sprint’s 160MHz of spectrum at 2.5GHz gives it remarkably wide coverage at 100 – 500 Mbps download speeds. Massive MIMO (multiple-input, multiple-output with 64 or more antennas) at 2.5 GHz works so well that Sprint is achieving great coverage without adding many small cells.
  • Etisalat (UAE) shows that any country that can afford it can deliver 5G today. Around the Gulf, Ooredoo (Kuwait, Qatar), Vodaphone (Qatar), du Telecom (UAE) and STC (Saudi Arabia) are speeding construction to avoid falling behind.
  • BT claims it will “move quickly” and turn on 100 cells per month (which is relatively few in comparison to Korea). BT’s website also claims that 5G has a latency speed of <1 ms, but the first measured latency is 31 ms. At Verizon, latency tests are often a little better than the announced 30 ms. Edge Networks, if deployed, can cut the latency by about half. A faster air interface, Ultra-Reliable Low-Latency Communication (URLLC), expected around 2023, could shave off another 5-7 ms. The business case for URLLC is unproven and it remains to be seen how widely it is deployed. In the rest of the section we look at these and other operators in a little more detail.

Live commercial 5G deployments globally, August 2019

Live 5G commercial deployments as of August 2019

This is the best available information on 5G deployments globally as of August 2019, gathered from both public and private sources. We have excluded operators that have announced 5G launches, but where services are not yet available for consumers to buy, such as AT&T in the US and Deutsche Telekom in Germany.

Table of contents

  • Executive Summary
  • Introduction
    • If carrier revenue doesn’t rise, the pressure to cut costs will grow
  • Operators
    • High-level takeaways
    • European operators
    • Asia Pacific and Middle Eastern operators
    • North America
  • Phone makers
  • 5G system vendors
    • Datang
    • Samsung
    • Ericsson
    • Huawei
    • Nokia
  • Chip makers
    • Qualcomm
    • Samsung
    • Intel
    • MediaTek
    • Huawei-HiSilicon
  • Conclusions: (Almost) all systems go

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

5G: The first three years

The near future of 5G

Who, among telecoms operators, are 5G leaders? Verizon Wireless is certainly among the most enthusiastic proponents.

On October 1, 2018, Verizon turned on the world’s first major 5G network. It is spending US$20 billion to offer 30 million homes millimetre wave 5G, often at speeds around a gigabit. One of the first homes in Houston “clocked speeds of 1.3 gigabits per second at 2,000 feet.”  CEO Vestberg expects to cover the whole country by 2028, some with 3.5 GHz. 5G: The first three years cuts through the hype and confusion to provide the industry a clear picture of the likely future. A companion report, 5G smart strategies, explores how 5G helps carriers make more money and defeat the competition.

This report was written by Dave Burstein with substantial help from Andrew Collinson and Dean Bubley.

What is 5G?

In one sense, 5G is just a name for all the new technologies now being widely deployed. It’s just better mobile broadband. It will not change the world anytime soon.

There are two very different flavours of 5G:

  • Millimetre wave: offers about 3X the capacity of mid-band or the best 4G. Spectrum used is from 20 GHz to over 60 GHz. Verizon’s mmWave system is designed to deliver 1 gigabit downloads to most customers and 5 gigabits shared. 26 GHz in Europe & 28 GHz in the U.S. are by far the most common.
  • Low and mid-band: uses 4G hardware and “New Radio” software. It is 60-80% less capable on average than millimetre wave and very similar in performance to 4G TD-LTE. 3.3 GHz – 4.2 GHz is by far the most important band.

To begin, a few examples.

5G leaders are deploying millimetre wave

Verizon’s is arguably currently the most advanced 5G network in the world. Perhaps most surprisingly, the “smart build” is keeping costs so low capital spending is coming down. Verizon’s trials found millimetre wave performance much better than expected. In some cases, 5G capacity allowed reducing the number of cells.

Verizon will sell fixed wireless outside its incumbent territory. It has ~80 million customers out of district. Goldman Sachs estimates it will add 8 million fixed wireless by 2023 and more than pay for the buildout.

Verizon CEO Hans Vestberg says he believes mmWave capacity will allow very attractive offerings that will win customers away from the competition.

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

What are the other 5G leaders doing?

Telefónica Deutschland has similar plans, hoping to blow open the German market with mmWave to a quarter of the country. Deutsche Telekom and Vodafone are sticking with the much slower mid-band 5G and could be clobbered.

Most 5G will be slower low and mid-band formerly called 4G

80% or more of 5G worldwide the next three years will not be high-speed mmWave. Industry group 3GPP decided early in 2018 to call anything running New Radio software “5G.” In practice, almost any currently shipping 4G radio can add on the software and be called “5G.” The software was initially said to raise capacity between 10% and 52%. That’s 60% to 80% slower than mmWave. However, improved 4G technology has probably cut the difference by more than half. That’s 60% to 80% slower than mmWave. It’s been called “faux 5G” and “5G minus,” but few make the distinction. T-Mobile USA promises 5G to the entire country by 2020 without a large investment. Neville Ray is blanketing the country with 4G in 20 MHz of the new 600 MHz band. That doesn’t require many more towers due to the long reach of low frequencies. T-Mobile will add NR software for a marketing push.

In an FCC presentation, Ray said standalone T-Mobile will have a very wide 5G coverage but at relatively low speeds. Over 85% of users will connect at less than 100 megabits. The median “5G” connection will be 40-70 megabits. Some users will only get 10-20 megabits, compared to a T-Mobile average today of over 30 megabits. Aggregating 600 MHz NR with other T-Mobile bands now running LTE would be much faster but has not been demonstrated.

While attesting to the benefits of the T-Mobile-Sprint deal, Neville claimed that using Sprint spectrum at 2500 MHz and 11,000 Sprint towers will make a far more robust offering by 2024. 10% of this would be mmWave.

In the final section of this report, I discuss 5G smart strategy: “5G” is a magic marketing term. It will probably sell well even if 4G speeds are similar. The improved sales can justify a higher budget.

T-Mobile Germany promises nationwide 5G by 2025. That will be 3.5 GHz mid-band, probably using 100 MHz of spectrum. Germany has just set aside 400 MHz of spectrum at 3.5 GHz. DT, using 100 MHz of 3.5 GHz, will deliver 100–400 megabit downloads to most.

100–400 megabits is faster than much of T-Mobile’s DSL. It soon will add fixed mobile in some rural areas. In addition, T-Mobile is selling a combined wireless and DSL router. The router uses the DSL line preferably but can also draw on the wireless when the user requires more speed.

China has virtually defined itself as a 5G leader by way of its government’s clear intent for the operators. China Mobile plans two million base stations running 2.5 GHz, which has much better reach than radio in the 3.5 GHz spectrum. In addition, the Chinese telcos have been told to build a remarkable edge network. Minister Miao Wei wants “90% of China within 25 ms of a server.” That’s extremely ambitious but the Chinese have delivered miracles before. 344 million Chinese have fibre to the home, most built in four years.

Telus, Canada’s second incumbent, in 2016 carefully studied the coming 5G choices. The decision was to focus capital spending on more fibre in the interim. 2016 was too early to make 5G plans, but a strong fibre network would be crucial. Verizon also invested heavily in fibre in 2016 and 2017, which now is speeding 5G to market. Like Verizon, Telus sees the fibre paying off in many ways. It is doing fibre to the home, wireless backhaul, and service to major corporations. CEO Darren Entwistle in November 2018 spoke at length about its future 5G, including the importance of its large fibre build, although he hasn’t announced anything yet.

There is a general principle that if it’s too early to invest in 5G, it’s a good idea to build as much fibre as you can in the interim.

Benefits of 5G technology

  • More broadband capacity and speed. Most of the improvement in capacity comes from accessing more bandwidth through carrier aggregation, and many antenna MIMO. Massive MIMO has shipped as part of 4G since 2016 and carrier aggregation goes back to 2013. All 5G phones work on 4G as well, connecting as 4G where there is no 5G signal.
  • Millimetre wave roughly triples capacity. Low and mid-band 5G runs on the same hardware as 4G. The only difference to 4G is NR software, which adds only modestly to capacity.
  • Drastically lower cost per bit. Verizon CEO Lowell McAdam said, “5G will deliver a megabit of service for about 1/10th of what 4G does.”
  • Reduced latency. 1 ms systems will mostly only be in the labs for several more years, but Verizon’s and other systems deliver speed from the receiver to the cell of about 10 milliseconds. For practical purposes, latency should be considered 15 ms to 50 ms and more, unless and until large “edge Servers” are installed. Only China is likely to do that in the first three years.

The following will have a modest effect, at most, in the next three years: Autonomous cars, remote surgery, AR/VR, drones, IoT, and just about all the great things promised beyond faster and cheaper broadband. Some are bogus, others not likely to develop in our period. 5G leaders will need to capitalise on near-term benefits.

Contents:

  • Executive Summary
  • Some basic timelines
  • What will 5G deliver?
  • What will 5G be used for?
  • Current plans reviewed in the report
  • Introduction
  • What is 5G?
  • The leaders are deploying millimetre wave
  • Key dates
  • What 5G and advanced 4G deliver
  • Six things to know
  • Six myths
  • 5G “Smart Build” brings cost down to little more than 4G
  • 5G, Edge, Cable and IoT
  • Edge networks in 5G
  • “Cable is going to be humongous” – at least in the U.S.
  • IoT and 5G
  • IoT and 5G: Does anyone need millions of connections?
  • Current plans of selected carriers (5G leaders)
  • Who’s who
  • Phone makers
  • The system vendors
  • Chip makers
  • Spectrum bands in the 5G era
  • Millimetre wave
  • A preview of 5G smart strategies
  • How can carriers use 5G to make more money?
  • The cold equations of growth

Figures:

  • Figure 1: 20 years of NTT DOCOMO capex
  • Figure 2: Verizon 5G network plans
  • Figure 3: Qualcomm’s baseband chip and radio frequency module
  • Figure 4: Intel 5G chip – Very limited 5G production capability until late 2019
  • Figure 5: Overview of 5G spectrum bands
  • Figure 6: 5G experience overview
  • Figure 7: Cisco VNI forecast of wireless traffic growth between 2021–2022

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

Huawei’s choice: 5G visionary, price warrior or customer champion?

Introduction: Huawei H1s

Huawei’s H1 2015 results caused something of a stir, as they seemed to promise a new cycle of rapid growth at the No.2 infrastructure vendor. The headline figure was that revenue for H1 was up 30% year-on-year, somewhat surprising as LTE infrastructure spending was thought to have passed the peak in much of the world. In context, Huawei’s revenue has grown at a 16% CAGR since 2010, while its operating profits have grown at 2%, implying very significant erosion of margins as the infrastructure business commoditises. Operating margins were in the region of 17-18% in 2010, before falling to 10-12% in 2012-2014.

Figure 1 – If Huawei’s H2 delivers as promised, it may have broken out of the commoditisation trap… for now

Source: STL Partners, Huawei press releases 

Our estimate, in Figure 1, uses the averages for the last 4 years to show two estimates for the full-year numbers. If the first, ‘2015E’, is delivered, this would take Huawei’s profitability back to the levels of 2010 and nearly double its operating profit. The second estimate ‘Alternate 2015E’, assumes a similar performance to last year’s, in which the second half of the year disappoints in terms of profitability. In this case, full-year margin would be closer to 12% rather than 18% and all the growth would be coming from volume. The H1 announcement promises margins for 2015 of 18%, which would therefore mean a very successful year indeed if they were delivered in H2. For the last few years, Huawei’s H2 revenue has been rather higher than H1, on average by about 10% for 2011-2014. You might expect this in a growing business, but profitability is much more erratic.

For reference, Figure 2 shows that the relationship between H1 and H2 profitability has varied significantly from year to year. While in 2012 and 2013 Huawei’s operating profits in H2 were higher than in H1, in 2011 and 2014, its H2 operating profits were much less than in H1. 2015E shows the scenario needed to deliver the 18% annual margin target; Alternate 2015E shows a scenario where H2 is relatively weak, in line with last year.

Figure 2 – Huawei’s H1 and H2 Profits have varied significantly year on year

Source: STL Partners, Huawei press releases 

Huawei’s annual report hints at some reasons for the weak H2 2014, notably poor sales in North America, stockbuilding ahead of major Chinese investment (inventory rose sharply through 2014), and the launch of the Honor low-cost device brand. However, although North American wireless investment was in fact low at the time, it’s never been a core market for Huawei, and Chinese carriers were spending heavily. It is plausible that adding a lot of very cheap devices would weigh on the company’s profitability. As we will see, though, there are reasons to think Huawei might not have got full value from strong carrier spending in this timeframe.

In any event, to hit Huawei’s ambitious 2015 target, it will need a great H2 2015 to follow from its strong H1. It hasn’t performed this particular ‘double’ for the last four years, so it will certainly be an achievement to do it in 2015. And if it does, how is the market looking for 2016 and beyond?

Where are we in the infrastructure cycle?

As Huawei is still primarily an infrastructure vendor, its business is closely coupled to operators’ CAPEX plans. In theory, these plans are meant to be cyclical, driven by the ever present urge to upgrade technology and build out networks. The theory goes that on one hand, technology drivers (new standards, higher-quality displays and camera sensors) and user behaviour (the secular growth in data traffic) drive operators to invest. On the other, financial imperatives (to derive as much margin from depreciating assets as possible) encourage operators to resist spending and sweat the assets.

Sometimes, the technology drivers get the upper hand; sometimes, the financial constraints. Therefore, the operator tends to “flip” between a high-investment and a low-investment state. Because operators compete, this behaviour may become synchronised within markets, causing large geographies to exhibit an infrastructure spending cycle.

In practice, there are other drivers that mitigate against the cyclical forces. There are ‘bottlenecks’ in integration and in scaling resources up and down, and generally, businesses prefer to keep expenditures as flat as possible to reduce variations and resulting ‘surprises’ for their shareholders. In general though, there is some ongoing variation in levels of capex investment in every market, as we examine in the following sections.

North America: operators take a breather before 5G

In North America, the tipping-point from sweating the assets to investment seems to have been reached roughly in 2011-2012, when the major carriers began a cycle of heavy investment in LTE infrastructure. This investment peaked in 2014. Recently, AT&T informed its shareholders to expect significantly lower CAPEX over the next few years, and in fact the actual numbers so far this year are substantially lower than the guidance of around 14-15% of revenue. Excluding the Mexican acquisitions, CAPEX/Revenue has been running around 13% since Q3 2014. From Q2 2013 to the end of Q2 2014, AT&T spent on average $5.7bn a quarter with the vendors. Since then, the average is $4.4bn, so AT&T has reduced its quarterly CAPEX by 21%.

Figure 3 – AT&T’s LTE investment cycle looks over.

Source: STL Partners, Huawei press releases

During 2013, AT&T, Sprint, and VZW were all in a higher spending phase, as Figure 3 shows. Since then, AT&T and Sprint have backed off considerably. However, despite its problems, Sprint does seem to be starting another round of investment, and VZW has started to invest again, while T-Mobile is rising gradually. We can therefore say that the investment pause in North America is overhyped, but does exist – compare the first half of 2013, when AT&T, Sprint, and T-Mobile were all near the top of the cycle while VZW was dead on the average.

Figure 4 – The investment cycle in North America.

Source: STL Partners

The pattern is somewhat clearer in terms of CAPEX as a percentage of revenue, shown in Figure 5. In late 2012 and most of 2013, AT&T, Sprint, and T-Mobile were all near the top of their historic ranges for CAPEX as a percentage of their revenue. Now, only Sprint is really pushing hard.

Figure 5 – Spot the outlier. Sprint is the only US MNO still investing heavily

Source: STL Partners, company filings

If there is cyclicality it is most visible here in Sprint’s numbers, and the cycle is actually pretty short – the peak-to-trough time seems to be about a year, so the whole cycle takes about two years to run. That suggests that if there is a more general cyclical uptick, it should be around H1 2016, and the one after that nicely on time for early 5G implementations in 2018.

  • Executive Summary
  • Introduction: Huawei H1s
  • Where are we in the infrastructure cycle?
  • North America: operators take a breather before 5G
  • Europe: are we seeing a return to growth?
  • China: full steam ahead under “special action mobilisation”
  • The infrastructure market is changing
  • Commoditisation on a historic scale
  • And Huawei is no longer the price leader
  • The China Mobile supercontract: a highly political event
  • Conclusion: don’t expect a surge in infrastructure profitability
  • Huawei’s 5G Strategy and the Standards Process
  • Huawei’s approach to 5G
  • What do operators want from 5G?
  • In search of consensus: 3GPP leans towards an simpler “early 5G” solution
  • Conclusions
  • STL Partners and Telco 2.0: Change the Game

 

  • Figure 1: In Q2, the Euro-5 out-invested Chinese operators for the first time
  • Figure 2: If Huawei’s H2 delivers as promised, it may have broken out of the commoditisation trap for now
  • Figure 3: Huawei’s H1 and H2 Profits have varied significantly year on year
  • Figure 4: AT&T’s LTE investment cycle looks over.
  • Figure 5: The investment cycle in North America.
  • Figure 6: Spot the outlier. Sprint is the only US MNO still investing heavily
  • Figure 7: 3 of the Euro-5 carriers are beginning to invest again
  • Figure 8: European investment levels are not as far behind as you might think
  • Figure 9: Chinese CAPEX/Revenue levels have been 10 percent higher than US or European ones – but this may be changing
  • Figure 10: Chinese infrastructure spending was taking a breather too, until Xi’s intervention
  • Figure 11: Chinese MNOs are investing heavily
  • Figure 12: LTE deployments have grown 100x while prices have fallen even more
  • Figure 13: As usual, Huawei is very much committed to a single radio solution
  • Figure 14: Huawei wants most 5G features in R15 by H2 2018
  • Figure 15: Huawei only supports priority for MBB very weakly and emphasises R16 and beyond
  • Figure 16: Chinese operators, Alcatel-Lucent, ZTE, and academic researchers disagree with Huawei
  • Figure 17: Orange’s view of 5G: distinctly practical
  • Figure 18: Telefonica is really quite sceptical about much of the 5G technology base
  • Figure 19: Qualcomm sees R15 as a bolt-on new radio in an LTE het-net
  • Figure 20: 3GPP RAN chairman Dino Flores says “yes” to prioritisation
  • Figure 21: Working as a group, the operators were slightly more ambitious
  • Figure 22: The vendors are very broadband-focused
  • Figure 23: Vodafone and Huawei

Facing Up to the Software-Defined Operator

Introduction

At this year’s Mobile World Congress, the GSMA’s eccentric decision to split the event between the Fira Gran Via (the “new Fira”, as everyone refers to it) and the Fira Montjuic (the “old Fira”, as everyone refers to it) was a better one than it looked. If you took the special MWC shuttle bus from the main event over to the developer track at the old Fira, you crossed a culture gap that is widening, not closing. The very fact that the developers were accommodated separately hints at this, but it was the content of the sessions that brought it home. At the main site, it was impressive and forward-thinking to say you had an app, and a big deal to launch a new Web site; at the developer track, presenters would start up a Web service during their own talk to demonstrate their point.

There has always been a cultural rift between the “netheads” and the “bellheads”, of which this is just the latest manifestation. But the content of the main event tended to suggest that this is an increasingly serious problem. Everywhere, we saw evidence that core telecoms infrastructure is becoming software. Major operators are moving towards this now. For example, AT&T used the event to announce that it had signed up Software Defined Networks (SDN) specialists Tail-F and Metaswitch Networks for its next round of upgrades, while Deutsche Telekom’s Terastream architecture is built on it.

This is not just about the overused three letter acronyms like “SDN and NFV” (Network Function Virtualisation – see our whitepaper on the subject here), nor about the duelling standards groups like OpenFlow, OpenDaylight etc., with their tendency to use the word “open” all the more the less open they actually are. It is a deeper transformation that will affect the device, the core network, the radio access network (RAN), the Operations Support Systems (OSS), the data centres, and the ownership structure of the industry. It will change the products we sell, the processes by which we deliver them, and the skills we require.

In the future, operators will be divided into providers of the platform for software-defined network services and consumers of the platform. Platform consumers, which will include MVNOs, operators, enterprises, SMBs, and perhaps even individual power users, will expect a degree of fine-grained control over network resources that amounts to specifying your own mobile network. Rather than trying to make a unitary public network provide all the potential options as network services, we should look at how we can provide the impression of one network per customer, just as virtualisation gives the impression of one computer per user.

To summarise, it is no longer enough to boast that your network can give the customer an API. Future operators should be able to provision a virtual network through the API. AT&T, for example, aims to provide a “user-defined network cloud”.

Elements of the Software-Defined Future

We see five major trends leading towards the overall picture of the ‘software defined operator’ – an operator whose boundaries and structure can be set and controlled through software.

1: Core network functions get deployed further and further forwards

Because core network functions like the Mobile Switching Centre (MSC) and Home Subscriber Server (HSS) can now be implemented in software on commodity hardware, they no longer have to be tied to major vendors’ equipment deployed in centralised facilities. This frees them to migrate towards the edge of the network, providing for more efficient use of transmission links, lower latency, and putting more features under the control of the customer.

Network architecture diagrams often show a boundary between “the Internet” and an “other network”. This is called the ‘Gi interface’ in 3G and 4G networks. Today, the “other network” is usually itself an IP-based network, making this distinction simply that between a carrier’s private network and the Internet core. Moving network functions forwards towards the edge also moves this boundary forwards, making it possible for Internet services like content-delivery networking or applications acceleration to advance closer to the user.

Increasingly, the network edge is a node supporting multiple software applications, some of which will be operated by the carrier, some by third-party services like – say – Akamai, and some by the carrier’s customers.

2: Access network functions get deployed further and further back

A parallel development to the emergence of integrated small cells/servers is the virtualisation and centralisation of functions traditionally found at the edge of the network. One example is so-called Cloud RAN or C-RAN technology in the mobile context, where the radio basebands are implemented as software and deployed as virtual machines running on a server somewhere convenient. This requires high capacity, low latency connectivity from this site to the antennas – typically fibre – and this is now being termed “fronthaul” by analogy to backhaul.

Another example is the virtualised Optical Line Terminal (OLT) some vendors offer in the context of fixed Fibre to the home (FTTH) deployments. In these, the network element that terminates the line from the user’s premises has been converted into software and centralised as a group of virtual machines. Still another would be the increasingly common “virtual Set Top Box (STB)” in cable networks, where the TV functions (electronic programming guide, stop/rewind/restart, time-shifting) associated with the STB are actually provided remotely by the network.

In this case, the degree of virtualisation, centralisation, and multiplexing can be very high, as latency and synchronisation are less of a problem. The functions could actually move all the way out of the operator network, off to a public cloud like Amazon EC2 – this is in fact how Netflix does it.

3: Some business support and applications functions are moving right out of the network entirely

If Netflix can deliver the world’s premier TV/video STB experience out of Amazon EC2, there is surely a strong case to look again at which applications should be delivered on-premises, in the private cloud, or moved into a public cloud. As explained later in this note, the distinctions between on-premises, forward-deployed, private cloud, and public cloud are themselves being eroded. At the strategic level, we anticipate pressure for more outsourcing and more hosted services.

4: Routers and switches are software, too

In the core of the network, the routers that link all this stuff together are also turning into software. This is the domain of true SDN – basically, the effort to substitute relatively smart routers with much cheaper switches whose forwarding rules are generated in software by a much smarter controller node. This is well reported elsewhere, but it is necessary to take note of it. In the mobile context, we also see this in the increasing prevalence of virtualised solutions for the LTE Enhanced Packet Core (EPC), Mobility Management Entity (MME), etc.

5: Wherever it is, software increasingly looks like the cloud

Virtualisation – the approach of configuring groups of computers to work like one big ‘virtual computer’ – is a key trend. Even when, as with the network devices, software is running on a dedicated machine, it will be increasingly found running in its own virtual machine. This helps with management and security, and most of all, with resource sharing and scalability. For example, the virtual baseband might have VMs for each of 2G, 3G, and 4G. If the capacity requirements are small, many different sites might share a physical machine. If large, one site might be running on several machines.

This has important implications, because it also makes sharing among users easier. Those users could be different functions, or different cell sites, but they could also be customers or other operators. It is no accident that NEC’s first virtualised product, announced at MWC, is a complete MVNO solution. It has never been as easy to provide more of your carrier needs yourself, and it will only get easier.

The following Huawei slide (from their Carrier Business Group CTO, Sanqi Li) gives a good visual overview of a software-defined network.

Figure 1: An architecture overview for a software-defined operator
An architecture overview for a software-defined operator March 2014

Source: Huawei

 

  • The Challenges of the Software-Defined Operator
  • Three Vendors and the Software-Defined Operator
  • Ericsson
  • Huawei
  • Cisco Systems
  • The Changing Role of the Vendors
  • Who Benefits?
  • Who Loses?
  • Conclusions
  • Platform provider or platform consumer
  • Define your network sharing strategy
  • Challenge the coding cultural cringe

 

  • Figure 1: An architecture overview for a software-defined operator
  • Figure 2: A catalogue for everything
  • Figure 3: Ericsson shares (part of) the vision
  • Figure 4: Huawei: “DevOps for carriers”
  • Figure 5: Cisco aims to dominate the software-defined “Internet of Everything”

Smartphones: when will Huawei be No.1?

Summary: We were surprised to hear Huawei’s objective of becoming the world’s No.1 Smartphone maker at last year’s Mobile World Congress, and somewhat dubious whether it would achieve that goal. However, at this year’s show Huawei demonstrated impressive progress, and we consider it is no longer a question of if, but when it will achieve its goal. In this analysis we explore industry scenarios and their consequences.(March 2013, Executive Briefiing Service).

Huawei Ascend P2 Smartphone

  Read in Full (Members only)   To Subscribe click here

Below is an extract from this 11 page Telco 2.0 Briefing Report that can be downloaded in full in PDF format by members of the Telco 2.0 Executive Briefing service here. Disruptive innovation and strategies will be a key theme at our Executive Brainstorms in Silicon Valley (March 2013), and Europe (London, June 2013). Non-members can subscribe here and for this and other enquiries, please email contact@telco2.net / call +44 (0) 207 247 5003.

Huawei’s position

A brief history of Huawei

Huawei is no minnow. Revenues in 2012 were US$35bn, profits were US$2.5bn, R&D spend was US$4.8bn, and it employs 125k people of whom 75k are in R&D and have relationships with nearly every mobile operator on the planet. 

In network equipment Huawei has grown from market entrant to market leadership in fifteen years. The first overseas order was for fixed line products to Hutchison Whampoa in Hong Kong in 1997. The first major overseas wireless order was to build the Dutch operator Telfort’s 3G network in 2003. The initial primary reason for many operators choosing Huawei network equipment was their low price. Many people have claimed the price was below cost. No-one would argue that the decade that followed resulted in a torrent of red ink on most network equipment vendors profit and loss accounts and market share gains by Huawei.

In consumer equipment, Huawei initially focussed upon the dongle market introducing its first datacard in 2007. Within three years, Huawei achieved market leadership and today has a market share in excess of 50% around the globe. At Mobile World Congress 2013 (MWC13), the Huawei stand had by far the most impressive range of dongles: USB, MiFi and embedded. Again, Huawei was the price leader and competitors claimed below-cost selling to establish market leadership. In 2011, Huawei settled a lawsuit with the previous EU market leader, Option, about anti-dumping practices. 

In 2012, Huawei devices had revenues of US$7.5m and sold over 120m units: including 50m dongles and 52m handsets, of which 32m were smartphones. Today, Huawei is the world’s number three Smartphone maker according to data released by IDC.

 Figure 1 – Smartphone Manufacturer – Units and Growth Q4 2011/12

Manufacturer

Units 4Q12

Units 4Q11

Growth

Samsung

63.7

36.2

76.0%

Apple

47.8

37.0

29.2%

Huawei

10.8

5.7

89.5%

Others

97.1

81.9

18.6%

 

219.4

160.8

36.4%

 

 

 

 

All Phone

 

 

 

Samsung

111.2

99

12.3%

Apple

47.8

37

29.2%

Huawei

15.8

13.9

13.7%

Others

307.7

323.5

-4.9%

 

482.5

473.4

1.9%

Source: IDC

Price – Huawei’s usual weapon of choice

Given Huawei’s history, it is highly likely that in trying to achieve its Smartphone goal the primary weapon will be price. This will have a profound effect in the Smartphone market in the medium term. Our view is that the Smartphone profit pool will be severely reduced for nearly all manufacturers, Apple being the exception, at least until Huawei achieves its goal.

In Q4 2012, Smartphone shipments were 45% of total phones compared to 34% in the same period in 2011. Our view is that this growth in penetration will continue over the coming years peaking at approximately 80% in 2015. This growth will mean a lot of new smartphone users which will be extremely price conscious especially compared to the early smartphone adopters.

Our view is that in this growing market of price conscious users across the globe, Huawei is in the prime position to capture a significant portion of the market. In an optimistic case where the existing Smartphone manufacturers allow Huawei a price advantage, we believe it will take Huawei three years (i.e. Q4 2016) to achieve leadership. In a pessimistic case, we believe it will take Huawei five years (i.e. Q4 2018). 

Promotion – how can money help solve this problem?

The Huawei brand is not well known outside of China and many of the manufacturers see this is a major weakness. Our view is slightly contrarian – if Huawei can achieve #3 position with a brand that has such limited customer awareness, imagine what they could achieve if the brand was well known? 

The key Huawei announcement was in our opinion a commitment to brand building in 2013. While it is impossible to build the brand strength of an Apple in the short term, it is possible to create brand awareness with a huge spend on promotion and advertising. We can envisage that all the world’s top branding agencies are current descending on Shenzchen offering to help Huawei with their branding campaigns across the globe. We believe that in three years time the Huawei brand will be as well know as the other Smartphone makers.

Product – Huawei ascendant

Figure 2 – Huawei Ascend P2 Flagship Smartphone

Huawei Ascend P2 Smartphone 

At MWC13, Huawei launched the Ascend P2 as its new flagship product for 2013. Our view is that the build quality is extremely good with a lovely Corning Gorilla Glass screen. Perhaps the quality is not quite as high as the new Sony Xperia, but at least comparable with all the other new models in the show. The differentiator that Huawei is promoting is that it is the fastest handset in the world supporting 4G speeds of up to 150Mbps. This is a bit unrealistic in our view as no networks are yet built to support those speeds. However, it highlights that Huawei do have excellence in radio engineering and will use its vast R&D army to create differentiation. Huawei have already a commitment from the Orange group to sell the Ascend P2. The Ascend P2 will retail at a highly competitive €400 before operator subisidies.

Flagship products are important to show capabilities, but will not create the huge volumes required to achieve leadership. Huawei had a full range of handsets on display across the whole range of price points.

To read the note in full, including the following additional sections detailing support for the analysis…
  • Place – money talks and distributors will listen
  • The Marketing Mix
  • Five Smartphone Market Scenarios
  • Conclusion

…and the following figures…

  • Figure 1 – Smartphone Manufacturer – Units and Growth Q4 2011/12
  • Figure 2 – Huawei Ascend P2 Flagship Smartphone
  • Figure 3 – Smartphone market scenarios

Members of the Telco 2.0 Executive Briefing Subscription Service can download the full 11 page report in PDF format hereNon-Members, please subscribe here. For this or other enquiries, please email contact@telco2.net / call +44 (0) 207 247 5003.

‘Under-The-Floor’ (UTF) Players: threat or opportunity?

Introduction

The ‘smart pipe’ imperative

In some quarters of the telecoms industry, the received wisdom is that the network itself is merely an undifferentiated “pipe”, providing commodity connectivity, especially for data services. The value, many assert, is in providing higher-tier services, content and applications, either to end-users, or as value-added B2B services to other parties. The Telco 2.0 view is subtly different. We maintain that:

  1. Increasingly valuable services will be provided by third-parties but that operators can provide a few end-user services themselves. They will, for example, continue to offer voice and messaging services for the foreseeable future.
  2. Operators still have an opportunity to offer enabling services to ‘upstream’ service providers such as personalisation and targeting (of marketing and services) via use of their customer data, payments, identity and authentication and customer care.
  3. Even if operators fail (or choose not to pursue) options 1 and 2 above, the network must be ‘smart’ and all operators will pursue at least a ‘smart network’ or ‘Happy Pipe’ strategy. This will enable operators to achieve three things.
  • To ensure that data is transported efficiently so that capital and operating costs are minimised and the Internet and other networks remain cheap methods of distribution.
  • To improve user experience by matching the performance of the network to the nature of the application or service being used – or indeed vice versa, adapting the application to the actual constraints of the network. ‘Best efforts’ is fine for asynchronous communication, such as email or text, but unacceptable for traditional voice telephony. A video call or streamed movie could exploit guaranteed bandwidth if possible / available, or else they could self-optimise to conditions of network congestion or poor coverage, if well-understood. Other services have different criteria – for example, real-time gaming demands ultra-low latency, while corporate applications may demand the most secure and reliable path through the network.
  • To charge appropriately for access to and/or use of the network. It is becoming increasingly clear that the Telco 1.0 business model – that of charging the end-user per minute or per Megabyte – is under pressure as new business models for the distribution of content and transportation of data are being developed. Operators will need to be capable of charging different players – end-users, service providers, third-parties (such as advertisers) – on a real-time basis for provision of broadband and maybe various types or tiers of quality of service (QoS). They may also need to offer SLAs (service level agreements), monitor and report actual “as-experienced” quality metrics or expose information about network congestion and availability.

Under the floor players threaten control (and smartness)

Either through deliberate actions such as outsourcing, or through external agency (Government, greenfield competition etc), we see the network-part of the telco universe suffering from a creeping loss of control and ownership. There is a steady move towards outsourced networks, as they are shared, or built around the concept of open-access and wholesale. While this would be fine if the telcos themselves remained in control of this trend (we see significant opportunities in wholesale and infrastructure services), in many cases the opposite is occurring. Telcos are losing control, and in our view losing influence over their core asset – the network. They are worrying so much about competing with so-called OTT providers that they are missing the threat from below.

At the point at which many operators, at least in Europe and North America, are seeing the services opportunity ebb away, and ever-greater dependency on new models of data connectivity provision, they are potentially cutting off (or being cut off from) one of their real differentiators.
Given the uncertainties around both fixed and mobile broadband business models, it is sensible for operators to retain as many business model options as possible. Operators are battling with significant commercial and technical questions such as:

  • Can upstream monetisation really work?
  • Will regulators permit priority services under Net Neutrality regulations?
  • What forms of network policy and traffic management are practical, realistic and responsive?

Answers to these and other questions remain opaque. However, it is clear that many of the potential future business models will require networks to be physically or logically re-engineered, as well as flexible back-office functions, like billing and OSS, to be closely integrated with the network.
Outsourcing networks to third-party vendors, particularly when such a network is shared with other operators is dangerous in these circumstances. Partners that today agree on the principles for network-sharing may have very different strategic views and goals in two years’ time, especially given the unknown use-cases for new technologies like LTE.

This report considers all these issues and gives guidance to operators who may not have considered all the various ways in which network control is being eroded, from Government-run networks through to outsourcing services from the larger equipment providers.

Figure 1 – Competition in the services layer means defending network capabilities is increasingly important for operators Under The Floor Players Fig 1 Defending Network Capabilities

Source: STL Partners

Industry structure is being reshaped

Over the last year, Telco 2.0 has updated its overall map of the telecom industry, to reflect ongoing dynamics seen in both fixed and mobile arenas. In our strategic research reports on Broadband Business Models, and the Roadmap for Telco 2.0 Operators, we have explored the emergence of various new “buckets” of opportunity, such as verticalised service offerings, two-sided opportunities and enhanced variants of traditional retail propositions.
In parallel to this, we’ve also looked again at some changes in the traditional wholesale and infrastructure layers of the telecoms industry. Historically, this has largely comprised basic capacity resale and some “behind the scenes” use of carriers-carrier services (roaming hubs, satellite / sub-oceanic transit etc).

Figure 2 – Telco 1.0 Wholesale & Infrastructure structure

Under The Floor (UTF) Players Fig 2 Telco 1.0 Scenario

Source: STL Partners

Content

  • Revising & extending the industry map
  • ‘Network Infrastructure Services’ or UTF?
  • UTF market drivers
  • Implications of the growing trend in ‘under-the-floor’ network service providers
  • Networks must be smart and controlling them is smart too
  • No such thing as a dumb network
  • Controlling the network will remain a key competitive advantage
  • UTF enablers: LTE, WiFi & carrier ethernet
  • UTF players could reduce network flexibility and control for operators
  • The dangers of ceding control to third-parties
  • No single answer for all operators but ‘outsourcer beware’
  • Network outsourcing & the changing face of major vendors
  • Why become an under-the-floor player?
  • Categorising under-the-floor services
  • Pure under-the-floor: the outsourced network
  • Under-the-floor ‘lite’: bilateral or multilateral network-sharing
  • Selective under-the-floor: Commercial open-access/wholesale networks
  • Mandated under-the-floor: Government networks
  • Summary categorisation of under-the-floor services
  • Next steps for operators
  • Build scale and a more sophisticated partnership approach
  • Final thoughts
  • Index

 

  • Figure 1 – Competition in the services layer means defending network capabilities is increasingly important for operators
  • Figure 2 – Telco 1.0 Wholesale & Infrastructure structure
  • Figure 3 – The battle over infrastructure services is intensifying
  • Figure 4 – Examples of network-sharing arrangements
  • Figure 5 – Examples of Government-run/influenced networks
  • Figure 6 – Four under-the-floor service categories
  • Figure 7: The need for operator collaboration & co-opetition strategies

LTE: Less Transforming than Expected

This is an extract from a report by Arete Research, a Telco 2.0TM partner specalising in investment analysis. The views in this article are not intended to constitute investment advice from Telco 2.0TM or STL Partners. We are reprinting Arete’s analysis to give our customers some additional insight into how some investors see the Telecoms market.

This report can be downloaded in full in PDF format by members of the Telco 2.0 Executive Briefing service and Future Networks Stream using the links below.

                            Read in Full (Members only)        To Subscribe

Please use the links or email contact@telco2.net or call +44 (0) 207 247 5003 to find out more.

To share this article easily, please click:



A New IPR Cold War Begins

Everyone in the technology industry loves “next gen” products: they solve all the problems of the previous iteration! In LTE: Late, Tempting, and Elusive in June ’09, we [Arete Research] forecast delays and said LTE would require intensive R&D and bring minimal near-term sales. Two years later, its impact is limited, mostly driven by market-specific reasons.  Now we see operators adopting LTE by moving to single RAN (radio access network) platforms, giving them a choice of how to use spectrum, and sparking de facto concentration of vendor market shares. 

The “single RAN” (including LTE) is another example of deflation in wireless infrastructure; peak shipments of HSPA may be five years off, but now come with LTE.  Collapsing networks onto single platforms (so-called “network modernisation”) prepares operators to re-farm spectrum, even if short-term spend goes up.  The vendor market is consolidating around Ericsson and Huawei (both financially stable), with ZTE and Samsung as new entrants, and ALU, NSN and NEC struggling to make profits (see Fig. 1) while “pioneering” new concepts. All vendors see LTE as their chance to gain share, a dangerous phase.  LTE also threatens to add costs in ’12 as networks need optimisation. A recent LTE Asia conference reinforced our three previous meanings for this nascent technology:

Still Late.  In ’09 we said “Late is Great,” with no business case for aggressive deployment.  Most operators are in “commercial trials”, awaiting firmer spectrum allocations, if not also devices.  LTE rollouts have been admirably measured in all but a few markets, and where accelerated, mostly done for market-specific reasons.

Less Tempting?  Operators are re-setting pricing and ending unlimited plans. LTE’s better spectral efficiency requires much higher device penetration.  Operators are gradually deploying LTE as part of a evolution to single RAN networks (allowing re-farming), but few talk of “enabling new business models” beyond 3G technology.

Elusive Economics.  As a new air interface, LTE needs work in spectrum, standards and handsets. Device makers are cagey about ramping LTE volumes at mid-range price points.  Vendors are still testing new concepts to lower costs in dense urban areas.  Network economics (of any G) are driven by single RAN rollouts, often by low-cost vendors.

Transformation Hardly Happens.  For all the US 4G hype, LTE is continuing a decade-old “revolution” in mobile data (DoCoMo launched 3G in ’01), boosted by smartphones since ’07.  LTE or not, operators struggle to add value beyond connectivity.  Investors should reward operators that reach the lowest long-term cash costs, even with upfront capex.

No Help to Vendor Margins.  Despite 175 “commitments” to launch LTE, single RANs will be no bonanza, inviting fresh attempts to “buy” share. In a market we see growing ~5-10% in ’12.  Ericsson and Huawei are the only vendors now generating returns above their capital costs: LTE will not make this better, while vendors like NSN and ALU must fend off aggressive new entrants like ZTE pricing low to win swaps deals.

Figure 1: Vendor “Pro-Forma” Margins ’07-’12E: Only Two Make Likely Cost of Capital

Arete Research Estimated Returns by Network Equipment Vendor 2011

To read the Briefing in full, including in addition to the above analysis of:

  • Operators: Better Late than Early!
  • Something New Here?
  • Standards/Spectrum: Much to Do
  • Vendors: Challenges ‘Aplenty
  • … Not Enough Profits for All
  • Devices: All to Come
  • Transformation… Not!

…and the following charts and tables…

  • Figure 1: Vendor “Pro-Forma” Margins ’07-’12E: Only Two Make Likely Cost of Capital
  • Figure 2: Verizon LTE Just in the Dots
  • Figure 3: Terminals Needed to Make LTE Work
  • Figure 4: “Scissor Effect” Facing Operators
  • Figure 5: Every Bit of the Air: Potential Spectrum to Be Used for LTE
  • Figure 6: Vendor Scale on ’11 Sales: Clear Gaps

Members of the Telco 2.0TM Executive Briefing Subscription Service and Future Networks Stream can download the full 7 page report in PDF format here. Non-Members, please see here for how to subscribe. Please email contact@telco2.net or call +44 (0) 207 247 5003 for further details.