Transport and logistics: The role of private 4G/5G

A deep-dive into the transport and logistics sector

This report is a deep-dive into the transport and logistics vertical for private 4G/5G (P5G) cellular networks. It is intended to be both a specific examination of an important sector of opportunity for P5G and a more general example of the complexity of major industrial sectors, especially campus-based or larger-scale dedicated environments. It also covers opportunities for MNOs, and some of the public 5G angles, with additional references to alternative wireless networks such as Wi-Fi and satellite connectivity.

Often technology product and marketing executives think of industry sectors as monolithic (“finance”, “retail”, “oil and gas”, etc.), typically aligning with familiar industry classification codes. The truth is that each industry has multiple sub-sectors and varied site types, numerous applications, several user-groups, arrays of legacy systems and technology vendors, and differing attitudes and affordability of wireless solutions. This is especially true of transport and logistics, where railway stations share only limited technology or use case overlap with airports, or distribution warehouses.

The transport sector is further complicated by its overlap with the public sector – not only does it constitute an important part of countries’ critical national infrastructure, but in many cases major transport firms have a history of state ownership, or are still owned and run by governments today.

There are also numerous sector-specific regulatory angles, which often translate to conservatism about technology, and a tendency to develop custom solutions and standards. Investment cycles can be very long and sometimes politicised, with assets often expected to be in place for decades. On the positive side, the strategic importance of transport can mean that the sector receives special attention in areas such as spectrum allocations.

Enter your details below to download an extract of the report

Definition of the transport and logistics sector

There are numerous transport and logistics sub-sectors and site types covered in this report. Although there are some common features and market drivers, there are also clear differences in locations’ physical size and layout, as well as equipment and application platforms, legacy/alternative wireless technologies, regulatory oversight and technology conservatism.

Multiple sub-sectors for transport / logistics vertical

The key domains covered include:

  • Transportation hubs, which refers to sites like ports, airports, stations and railyards. They vary significantly in size.
  • Logistics, which relates to the centralised facilities for shipping, storage and sorting of containers and packages, such as warehouses and fulfilment / distribution centres. It also encompasses the wide-area / global transport of containers, packages and bulk products on trucks, trains and ships.
  • Transport networks including rail networks, metropolitan transit and light-rail systems, and road networks.

There are also often hybrid sites, such as FedEx’s huge logistics hub sites next to Memphis and Indianapolis airports.

In addition, there is also significant overlap with various other sectors, such as major manufacturing sites. For instance, aerospace manufacture and maintenance typically occurs at combined factories/airfields such as Boeing and Airbus’ facilities. Similar combined operations occur in ship-building and train production. Mining, steel and cement companies may even have their own private rail-lines, from remote sites or industrial zones, to multi-modal transit hubs at ports or cities.

For logistics sites, it should be noted that many facility owners also have large retail networks (such as Costco and Walmart), or other sites such as Amazon’s AWS datacentres. Those ancillary operations and their specific applications are not directly included here.

For metropolitan transit, various transport-related facilities may be under the ownership or control of local government and municipal bodies. Similar overlaps between transport-related sites and government occur for military, public safety and other agencies.

Transport / logistics intersects with several adjacent verticals

Sector trends and drivers affecting private networks

This report is not the appropriate venue for a full analysis of the transport and logistics industry, which is made up of multiple sub-sectors, as discussed above.

However, the demand for private networks for these sectors is ultimately driven by a number of top-level national and global changes, in addition to certain local factors such as political support for new metro transit systems, “free ports” or enterprise zones, or efforts to modernise railway networks.

Broadly speaking, these all create a greater requirement for connectivity, control and information flows – which then translates to more 4G and 5G networks, as well as Wi-Fi, fibre and wide-area network services. There are also various new greenfield infrastructure projects, which lend themselves well to ground-up design of fit-for-purpose communications systems.

Some of the key megatrends spanning all aspects of logistics and transportation include:

  • Automation and robotics: As discussed throughout this report, transport hubs and warehouses are becoming much more automated. Although mechanisation via port cranes, baggage-handling systems and automated guided vehicles is not new, the systems are being enhanced rapidly. In particular, sorting or control systems, robots and other forms of automation are using wireless video cameras for detecting packages, enabling remote-control by tele-operators and many other uses.
  • Data and analytics: Transport and logistics companies are at the forefront of data-rich applications, from digital twins of jet engines and rail locomotives, to optimised scheduling and packaging of goods in fulfilment warehouses. Better-connected equipment, IoT sensors and video input can improve turnaround times, reduce shipment errors, reduce energy consumption and much more. Passenger-led transportation should face fewer delays, more dispersed crowds and improved customer service.
  • Predictive maintenance and asset management: Transport systems are capital-intensive. The cost of downtime for a vehicle – or critical system in a warehouse or airport terminal – can be huge. There is a huge opportunity for using networked information and sensors to enable predictive maintenance – i.e. fixing emergent problems before they become critical, or scheduling regular maintenance when it is needed rather than just based on a generic schedule. For instance, anomalous readings from vibration and temperature sensors can give early warnings of issues. There are also obvious safety benefits in areas such as aviation and maritime fault-diagnosis.
  • Improved employee safety and productivity: There is far less tolerance of industrial accidents than in the past. Using automation and better information, transportation and logistics firms are looking to increase worker productivity at the same time as improving safety. This spans many aspects, from ensuring safe distances between workers and vehicles, to rapid reaction to any incident, plus improved recordkeeping and training. Reliable communication is essential, using both voice (often push-to-talk) and an increasing need for video communications and mobile access to enterprise application.
  • Climate change and decarbonisation: Over the next decade, many transport and logistics businesses will face profound change as the planet heads towards net zero carbon emissions. Ports, airports, distribution centres and other sites are likely to need new electrical sources such as wind and solar, onsite battery storage, maybe hydrogen facilities and fleets of electric (often autonomous) site vehicles and machines. Connectivity will be needed for all of this, plus energy use monitoring, control, data-collection and reporting.
  • Geopolitics, re-shoring and supply-chain resilience: Recent events such as the US-China trade war, the COVID pandemic and the Russia/Ukraine war have highlighted the risks of global (and often fragile) supply chains to disruptive external events. Traffic and passenger levels at many airports fell to 20% of pre-pandemic levels or lower. While demand is now recovering in many places, other issues have emerged as well – from economic fluctuations, to fuel price inflation and staffing shortages. As well as localised production, shipping and logistics will need to be much more efficient, automated and connected in order to re-route shipments, store inventory and deal with new paperwork and compliance requirements.
  • Cybersecurity: Transport hubs and warehouses are part of national critical infrastructure. The rise of automation and cloud-based functions poses security challenges as well as gains from efficiency. Old IT, network and operational systems will be strengthened or retired if they have vulnerabilities, while networks will need extra resilience and redundancy. Wireless networks may be used as backups in case of failure of fibre or other links.
  • New business models and vertical integration: Many transport companies are looking to extend their reach into adjacent industries, or via vertical integration within their own domain. Companies such as FedEx and UPS, as well as eCommerce players such as Amazon, have their own fleets of planes and on- or near-airport warehouse facilities. Rail companies are exploring new mixed use retail and office properties integrated with stations. Some are deploying dedicated energy infrastructure, ranging from solar farms to hydrogen electrolysis. All these facilities may be built as greenfield developments, with the project considering the latest connectivity options for IoT or other uses.
  • Enhanced customer / passenger experience: Both individual travellers and freight shippers have an expanded set of choices for travel and transport of goods. They make decisions not just on price, but also reliability / predictability, as well as up-to-date information about status and disruptions. There are expectations for easy Internet access, online portals for reservation and check-in, use of digital sign-boards onsite, accurate cargo tracking and condition-monitoring, simpler border and customs processes, and safe/secure travel environments. They also expect multi-modal transport to be made easier, with interchanges made more convenient and transparent for both goods and personal travel.

Transport / logistics megatrends and implications for connectivity

Source: STL Partners

Table of content

  • Executive Summary
    • Overview
    • Recommendations for traditional mobile operators
    • Recommendations for transportation operators
    • Recommendations for logistics companies
    • Recommendations for regulators and policymakers
    • Recommendations for vendors
  • Introduction
    • Definition of the transport and logistics sector
    • Sector trends and drivers affecting private networks
  • Use cases for 4G/5G in transport and logistics
    • Scale of transport sites and private networks
    • General use cases for private 5G in transport / logistics
    • Sector-specific issues and use cases for private networks
  • Building and running transport private networks
    • Supply-side evolution
    • Private vs. public cellular networks in transport
    • New service provider classes and delivery models
    • The vendor landscape
    • Regulatory and policymaking considerations
    • Wi-Fi, satellite and other wireless technologies
  • Conclusions and recommendations
    • Conclusion and long-term futures
    • Takeouts for traditional MNOs and telcos

Enter your details below to download an extract of the report

Enterprise Wi-Fi 6/7 is here to stay: 5G is not enough

Overview of Wi-Fi 6/7 for enterprises

This report is not a traditional analyst report on Wi-Fi covering market segments, shares and forecasts. Numerous peer organisations have a long tradition of quantitative marketing modelling and prediction; we are not intending to compete with them. For illustration purposes, we have used a couple of charts with the kind permission of Chris DePuy from 650 Group presented at a recent Wi-Fi Now conference, during a joint panel session with the author of this report.

Instead, this report looks more at the strategic issues around Wi-Fi and the enterprise – and the implications and recommendations for CIOs and network architects in corporate user organisations, opportunities for different types of CSPs, important points for policymakers and regulators, plus a preview of the most important technical innovations likely to emerge in the next few years. There may be some differences in stance or opinion compared to certain other STL reports.

The key themes covered in this report are:

    • Background to enterprise Wi-Fi: key uses, channels and market trends
    • Understanding “Wi-Fi for verticals”
    • Decoding the changes and new capabilities that come with Wi-Fi 6, 6E and 7
    • How and where public and private 5G overlaps or competes with Wi-Fi
    • CSP opportunities in enterprise Wi-Fi
    • Wi-Fi and regulation – and the importance of network diversity.

Enter your details below to request an extract of the report

Wi-Fi’s background and history

Today, most readers will first think of Wi-Fi as prevalent in the home and across consumer devices such as smartphones, laptops, TVs, game consoles and smart speakers. In total, there are over 18 billion Wi-Fi devices in use, with perhaps 3-4bn new products shipping annually.

Yet the history of Wi-Fi – and its underlying IEEE802.11 technology standards – is anchored in the enterprise.

The earliest incarnations of “wireless ethernet” in the 1990s were in sectors like warehousing and retail, connecting devices such as barcode scanners and point-of-sale terminals. Early leaders around 2000-2005 were companies such as Symbol, Proxim, 3Com and Lucent, supplying both industrial applications and (via chunky plug-in “PCMCIA” cards) laptops, mostly used by corporate employees.

During the 2003-2010 period, Wi-Fi exploded for both enterprises and (with the help of Apple and Intel) consumer laptops, and eventually early smartphones based on Windows and Symbian OS’s, then later iOS and Android.

The corporate world in “carpeted offices” started deploying more dedicated, heavyweight switched systems designed for dense networks of workers at desks, in meeting rooms and in cubicles. Venue Wi-Fi grew quickly as well, with full coverage becoming critical in locations such as airports and hotels, both for visitors and for staff and some connected IT systems. A certain amount of outdoor Wi-Fi was deployed, especially for city centres, but gained little traction as it coincided with broader coverage (and falling costs) of cellular data.

A new breed of enterprise Wi-Fi vendors emerged – and then quickly became consolidated by major networking and IT providers. This has occurred in several waves over the last 20 years. Cisco bought Airespace (and later Meraki and others), Juniper bought Trapeze and Mist Systems, and HP (later HPE) acquired Aruba. There has also been some telecom-sector acquisitions of Wi-Fi vendors, with Commscope acquiring Ruckus, and Ericsson buying BelAir.

While telcos have had some important roles in public or guest Wi-Fi deployments, including working with enterprises in sectors such as cafes, retail, and transport, they have had far less involvement with Wi-Fi deployed privately in enterprise offices, warehouses, factories, and similar sites. For the most part that has been integrated with the wired LAN infrastructure and broader IT domain, overseen by corporate IT/network teams and acquired via a broad array of channels and systems integrators. For industrial applications, many solution providers integrate Wi-Fi (and other wireless mechanisms) directly into machinery and automation equipment.

Looking to the future, enterprise Wi-Fi will coexist with both public and private 5G (including systems or perhaps slices provided by telcos), as well as various other wireless and fibre/fixed connectivity modes. Some elements will converge while others will stay separate. CSPs should “go with the grain” of enterprise networks and select/integrate/operate the right tools for the job, rather than trying to force-fit their preferred technical solution.

Roles and channels for enterprise Wi-Fi

Today, there are multiple roles for Wi-Fi in a business or corporate context. The most important include:

  • Traditional use in offices, both for normal working areas and shared spaces such as meeting and conference rooms. There is often a guest access option.
  • Small businesses use Wi-Fi extensively, as many workers rely on laptops and similar devices, plus vertical-specific endpoints such as payment terminals. Often, they will obtain Wi-Fi capabilities along with their normal retail business broadband connection from a service provider. This may include various types of guest-access option. Common use of shared buildings such as multi-tenant office blocks or retail malls means there may be a reliance on the landlord or site operator for network connectivity.
  • Working from home brings a wide range of new roles for Wi-Fi, especially where there is an intersection of corporate applications and security, with normal home and consumer demand. A growing range of solutions targets this type of converged situation.
  • Large visitor-led venues such as sports stadia, hotels and resorts are hugely important for the Wi-Fi industry. They often have guests with very high expectations of Wi-Fi reliability, coverage, and performance – and also often use the infrastructure themselves for staff, displays and various IoT and connected systems.
  • Municipal and city authorities have gone through two or more rounds of Wi-Fi deployments. Initial 2010-era visions for connectivity often stalled because of a mismatch between usage at the time (mostly on laptops, indoors) and coverage (mostly outdoors). Since then, the rise of smartphone ubiquity, plus a greater array of IoT and smart city devices has made city-centre Wi-Fi more useful again. Increasingly, it is being linked to 5G small cell deployments, metro fibre networks – and made more usable with easier roaming / logon procedures. Some local authorities’ scope also covers Wi-Fi use within education and healthcare settings.
  • Public Wi-Fi hotspots overlap with various enterprise sectors, most notably in transport, cafes/restaurants and hospitality sectors. Where organisations have large venues or multiple sites, such as chain of cafes or retail outlets, there is likely to be some wider enterprise proposition involved.
  • The transport industry is a hugely important sector for enterprise Wi-Fi solutions. Vehicles themselves (buses, planes, trains, taxis) require connectivity for passengers, while transport hubs (airports, stations, etc.) have huge requirements for ease-of-access and performance for Wi-Fi.
  • Wi-Fi technology is also widely used as the basis for fixed-wireless access over medium-to-wide areas. Sometimes using vendor-specific enhancements, it is common to use unlicenced spectrum and 802.11-based networks for connectivity to rural businesses or specific fixed assets. A new version of Wi-Fi technology (802.11ah HaLow) also allows low-power wide area applications for sensors and other IoT devices, which can potentially compete against LoRa and 4G NB-IoT, although it is very late to the market.
  • Niche applications for Wi-Fi technology also exist, for example backhauling other wireless technologies such as Bluetooth, for in-building sensing and automation. There are also emerging propositions such as using high-capacity 60GHz Wi-Fi to replace fibres and cabling inside buildings, especially for rapid installation or in environments where drilling holes in walls requires permits.

Enterprise Wi-Fi solutions cover a broad range of contexts and uses

Given the range of Wi-Fi enterprise market sectors and use cases, it is unsurprising that there are also multiple ways for companies and organisations to obtain the infrastructure, as well as operate the connectivity functions or services.

Some of the options include:

  • Self-provision: Many large organisations will source, install, and operate their own Wi-Fi networks via their IT and networking teams, as they do for fixed LAN and sometimes WAN equipment. They may rely on vendor or outsourced support and specific tasks such as wiring installation.
  • Broadband CSP: Especially for smaller sites, Wi-Fi is often obtained alongside business broadband connectivity, perhaps from an integrated router managed by the ISP.
  • Enterprise MSP: Larger businesses may use dedicated enterprise-grade service providers for their Internet connections, UCaaS services, SD-WAN / SASE networks and so on. These organisations may also provide on-site Wi-Fi installation and management services, or work with sub-contractors to deliver them.
  • Solution providers: Various IT and OT systems, such as building management systems or industrial automation solutions, may come with Wi-Fi embedded into the fabric of the proposition.
  • Managed Wi-Fi specialists: Especially for visitor-centric locations like transport hubs, Wi-Fi coverage and operation may be outsourced to a third party managed service operator. They will typically handle the infrastructure (and any upgrades), authentication, security and backhaul on a contractual basis. They will also likely provide staff/IoT connections as well as guest access.
  • Network integrators: Enterprises may obtain Wi-Fi installations as a one-off project from a network specialist (perhaps with separate maintenance / upgrade agreements). This may well be combined with fixed LAN infrastructure and other relevant elements. This may also be a channel for hybrid Wi-Fi / private cellular in future.
  • Vertical specialists: Various industries such as hotels, aviation, hospitals, mining and so on will often have dedicated companies catering to sector-specific needs, standards, regulations, or business practices. They may tie together various other technology elements, such as IoT connections, asset tracking, voice communications and so forth, using Wi-Fi where appropriate.
  • In-building wireless specialists: Various companies specialise in both indoor cellular coverage systems and Wi-Fi. Often linked to tower companies or neutral-host business models.

Table of Contents

  • Executive Summary
  • Introduction
    • Structure and objectives of this report
    • Background and history
    • Roles and channels for enterprise Wi-Fi
    • Recent enterprise Wi-Fi market trends
    • Note on terminology
  • The evolution of “Wi-Fi for verticals”
    • Understanding Wi-Fi “verticals”
    • Existing vertical-specific Wi-Fi solutions
    • Wi-Fi in industry verticals – building ecosystems
  • Wi-Fi 6, 6E & 7: Rapid cadence or confusion?
    • Continual evolution of Wi-Fi capabilities: 6, 6E, 7
    • Wi-Fi 7 may be a game-changer for enterprise
    • The long-term future: Wi-Fi 8 and beyond
    • Other Wi-Fi variants: 60GHz and HaLow
  • Where do Wi-Fi and 5G overlap competitively?
    • Does private 5G change the game?
    • Convergence / divergence
  • The political and regulatory dimensions of enterprise wireless
    • 6GHz spectrum
  • CSPs and enterprise Wi-Fi
    • CSPs and large enterprise / industrial Wi-Fi
    • Wi-Fi service value-adds
    • Wi-Fi and edge compute
  • Conclusions

Related research

Enter your details below to request an extract of the report

Scaling private cellular and edge: How to avoid POC and pilot purgatory

Evaluating the opportunities with private cellular and edge

The majority of enterprises today are still at the early stages of understanding the potential benefits of private cellular networking and edge computing in delivering enhanced business outcomes, but the interest is evident. Within private cellular for example, we have seen significant traction and uptake globally during 2020 and 2021, partially driven by increased availability and routes to spectrum due to localised spectrum licensing models across different markets (see this report). This has resulted in several trials and engagements with large companies such as Bosch, Ford, Rio Tinto, Heathrow Airport and more.

However, despite the rising interest, enterprises often encounter challenges with a lack of internal stakeholder alignment or the inability to find the right stakeholder to be accountable and own the deployment. Furthermore, many enterprises feel they lack the expertise to deploy and manage private networking and/or edge solutions. In some cases, enterprises have also cited a lack of maturity in the device and solution ecosystem, for example with lack of supported (or industry-grade) devices which have a 5G/LTE/CBRS capability embedded in them, or a significant inertia in the installed base around other connectivity solutions (e.g. Wi-Fi). Therefore, despite the value and business outcomes that private cellular and edge compute can unlock for enterprises, the opportunity is rarely clear-cut.

Our research is based on findings and analysis from a global interview programme with 20 enterprises in sectors that are ahead in exploring private cellular and edge computing, primarily in the industrial verticals, as well as telecoms operators and solutions providers within the private cellular and edge computing ecosystem.

Enter your details below to request an extract of the report

Telcos see private cellular and edge as two peas in a pod…

Telecoms operators see private cellular and edge computing as part of a larger revenue opportunity beyond fixed and public cellular. It is an opportunity for telcos to move from being seen as horizontal players providing increasingly commoditised connectivity services, to more vertical players that address value-adding industry-specific use cases. Private cellular and edge compute can be seen as components of a wider innovative and holistic end-to-end solution for enterprises, and part of the telcos’ ambition to become strategic partners or trusted advisors to customers.

We define a private cellular network as a dedicated local on-premises network, designed to cover a geographically-constrained area or site such as a production plant, a warehouse or a mine. It uses dedicated spectrum, which can be owned by the enterprise or leased from a telco operator or third party, and has dedicated operating functions that can run on the enterprise’s own dedicated or shared edge compute infrastructure. Private cellular networking is expected to play a key role in future wireless technology for enterprise on-premises connectivity. Private cellular networks can be configured specifically to an individual enterprise’s requirements to meet certain needs around reliability, throughput, latency etc. to enable vertical-specific use cases in a combined way that other alternatives have struggled to before. Although there are early instances of private networks going back to 2G GSM-R in the railway sector, for the purpose of this report, we focus on private cellular networks that leverage 4G LTE (Long Term Evolution) or 5G mobile technology.

Figure 1: Private cellular combines the benefits of fixed and wireless in a tailored way

benefits of private cellular

Source: STL Partners

Edge compute is about bringing the compute, storage and processing capabilities and power of cloud closer to the end-user or end-device (i.e. the source of data) by locating workloads on distributed physical infrastructure. It combines the key benefits of local compute, such as low latency, data localisation and reduced backhaul costs, with the benefits of cloud compute, namely scalability, flexibility, and cloud native operating models.

Figure 2: Edge computing combines local and cloud compute benefits to end-users

benefits of edge computing

Source: STL Partners

Within the telecoms industry, private cellular and edge computing are often considered two closely interlinked technologies that come hand-in-hand. Our previous report, Navigating the private cellular maze: when, where and how, explored the different private cellular capabilities that enterprises are looking to leverage, and our findings showed that security, reliability and control were cited as the most important benefits of private cellular. In many ways, edge compute also addresses these needs. Both are means of delivering ultra-low latency, security, reliability and high-throughput real time analytics, but in different ways.

…but this is not necessarily the case with enterprises

Although the telecoms industry often views edge computing and private cellular in the same vein, this is not always the case from the enterprise perspective. Not only do the majority of enterprises approach edge computing and private cellular as separate technologies, addressing separate needs, many are still at the early stages of understanding what they are.

There is oftentimes also a different interpretations and confusion of terminology when it comes to private cellular and edge compute. For example, in our interviews, a few enterprises describe traditional on-premises compute with local dedicated compute facilities within an operating site (e.g. a server room) as a flavour of edge compute. We argue that the key difference between traditional on-premises compute and on-premises edge compute is that with the latter, the applications and underlying infrastructure are both more cloud-like. Applications that leverage edge compute also use cloud-like technologies and processes (such as continuous integration and continuous delivery, or CI/CD in short) and the edge infrastructure uses containers or virtual machines and can be remotely managed (rather than being monolithic).

The same applies when it comes to private cellular networking, where the term ‘private network’ is used differently by certain individuals to refer to virtual private networks (VPNs) as opposed to the dedicated local on-premises network we have defined above. In addition, when it comes to private 5G, there is also confusion as to the difference between better in-building coverage of public 5G (i.e. the macro network) versus a private 5G network, for a manufacturing plant for example. This will only be further complicated by the upswing of network slicing, which can sometimes (incorrectly) be marketed as a private network.

Furthermore, for enterprises that are more familiar with the concepts, many are still looking to better understand the business value and outcomes that private LTE/5G and edge compute can bring, and what they can enable for their businesses.

 

Table of Contents

  • Executive Summary
  • Introduction
    • Evaluating the opportunities with private cellular and edge
    • Telcos see private cellular and edge as two peas in a pod…
    • …but this is not necessarily the case with enterprises
    • Most private cellular or edge trials or PoCs have yet to scale
  • Edge and private cellular as different tracks
    • Enterprises that understand private cellular don’t always understand edge (and vice versa)
    • Edge and private cellular are pursued as distinct initiatives
  • Breaking free from PoC purgatory
    • Lack of stakeholder alignment
    • Ecosystem inertia
    • Unable to build the business case
  • Addressing different deployment pathways
    • Tactical solutions versus strategic transformations
    • Find trigger points as key opportunities for scaling
    • Readiness of solutions: Speed and ease of deployment
  • Recommendations for enterprises
  • Recommendations for telco operators
  • Recommendations for others
    • Application providers, device manufacturers and OEMs
    • Regulators

Enter your details below to request an extract of the report

The new telcos: A field guide

Introduction

The traditional industry view is that “telcos” are a well-defined and fairly cohesive group. Industry associations like GSMA, ETNO, CTIA and others have typically been fairly homogeneous collections of fixed or mobile operators, only really varying in size. The third-ranked mobile operator in Bolivia has not really been that different from AT&T or Vodafone in terms of technology, business model or vendor relationships.

Our own company, STL Partners used to have the brand “Telco 2.0”. However, our main baseline assumption then was that the industry was mostly made up the same network operators, but using a new 2.0 set of business models.

This situation is now changing. Telecom service providers – telcos – are starting to emerge in a huge variety of new shapes, sizes and backgrounds. There is fragmentation in technology strategy, target audiences, go-to-market and regional/national/international scope.

This report is not a full explanation of all the different strategies, services and technological architecture. Instead of analysing all of the “metabolic” functions and “evolutionary mechanisms”, this is more of a field-guide to all the new species of telco that the industry is starting to see. More detail on the enablers – such as fibre, 5G and cloud-based infrastructure – and the demand-side (such as vertical industries’ communications needs and applications) can be found in our other output.

The report provides descriptions with broad contours of motivation, service-offerings and implications for incumbents. We are not “taking sides” here. If new telcos push out the older species, that’s just evolution of those “red in tooth and claw”. We’re taking the role of field zoologists, not conservationists.

Enter your details below to request an extract of the report

Field guides are collections/lists of natural & human phenomena

animal-species-telcos-stl-partners

Source: Amazon, respective publishers’ copyright

The historical landscape

The term “telco” is a little slippery to define, but most observers would likely agree that the “traditional” telecoms industry has mostly been made up of the following groups of CSPs:

  • MNOs: Countries usually have a few major mobile network operators (MNOs) that are typically national, or sometimes regional.
  • Fixed operators: Markets also have infrastructure-based fixed telcos, usually with one (or a small number) that were originally national state-owned monopolies, plus a select number of other licensed providers, often with greenfield FTTX fibre. Some countries have a vibrant array of smaller “AltNets”, or competitive carriers (originally known as CLECs in the US).
  • Converged operators: These combine fixed and mobile operations in the same business or group. Sometimes they are arms-length (or even in different countries), but many try to offer combined or converged service propositions.
  • Wholesale telcos: There is a tier of a few major international operators that provide interconnect services and other capabilities. Often these have been subsidiaries (or joint ventures) of national telcos.

In addition to these, the communications industry in each market has also often had an array of secondary connectivity or telecom service providers as a kind “supporting cast”, which generally have not been viewed as “telecom operators”. This is either because they fall into different regulatory buckets, only target niche markets, or tend to use different technologies. These have included:

  • MVNOs
  • Towercos
  • Internet Exchanges
  • (W)ISPs
  • Satellite operators

Some of these have had a strong overlap with telcos, or have been spun-out or acquired at various times, but they have broadly remained as independent organisations. Importantly, many of these now look much more like “proper telcos” than they did in the past.

Why are “new telcos” emerging now?

To some extent, many of the classes of new telco have been “hiding in plain sight” for some time. MVNOs, towercos and numerous other SPs have been “telcos in all but name”, even if the industry has often ignored them. There has sometimes been a divisive “them and us” categorisation, especially applied when comparing older operators with cloud-based communications companies, or what STL has previously referred to as “under the floor” infrastructure owners. This attitude has been fairly common within governments and regulators, as well as among operator executives and staff.

However, there are now two groups of trends which are leading to the blurring of lines between “proper telcos” and other players:

  • Supply-side trends: The growing availability of the key building blocks of telcos – core networks, spectrum, fibre, equipment, locations and so on – is leading to democratisation. Virtualisation and openness, as well as a push for vendor diversification, is helping make it easier for new entrants, or adjacent players, to build telecom-style networks
  • Demand-side trends: A far richer range of telecom use-cases and customer types is pulling through specialist network builders and operators. These can start with specific geographies, or industry verticals, and then expand from there to other domains. Private 4G/5G networks and remote/underserved locations are good examples which need customisation and specialisation, but there are numerous other demand drivers for new types of service (and service provider), as well as alternative business models.

Taken together, the supply and demand factors are leading to the creation of new types of telcos (sometimes from established SPs, and sometimes greenfield) which are often competing with the incumbents.

While there is a stereotypical lobbying complaint about “level playing fields”, the reality is that there are now a whole range of different telecom “sports” emerging, with competitors arranged on courses, tracks, fields and hills, many of which are inherently not “level”. It’s down to the participants – whether old or new – to train appropriately and use suitable gear for each contest.

Virtualisation & cloudification of networks helps newcomers as well as existing operators

virtualisation-cloudification-networks-STL-Partners

Source: STL Partners

Where are new telcos likeliest to emerge?

Most new telcos tend to focus initially on specific niche markets. Only a handful of recent entrants have raised enough capital to build out entire national networks, either with fixed or mobile networks. Jio, Rakuten Mobile and Dish are all exceptions – and ones which came with a significant industrial heritage and regulatory impetus that enabled them to scale broadly.

Instead, most new service providers have focused on specific domains, with some expanding more broadly at a later point. Examples of the geographic / customer niches for new operators include:

  • Enterprise private 4G/5G networks
  • Rural network services (or other isolated areas like mountains, offshore areas or islands)
  • Municipality / city-level services
  • National backbone fibre networks
  • Critical communications users (e.g. utilities)
  • Wholesale-only / shared infrastructure provision (e.g. neutral host)

This report sets out…

..to through each of the new “species” of telcos in turn. There is a certain level of overlap between the categories, as some organisations are developing networking offers in various domains in parallel (for instance, Cellnex offering towers, private networks, neutral host and RAN outsourcing).

The new telcos have been grouped into categories, based on some broad similarities:

  • “Evolved” traditional telcos: operators, or units of operators, that are recognisable from today’s companies and brands, or are new-entrant “peers” of these.
  • Adjacent wireless providers: these are service provider categories that have been established for many years, but which are now overlapping ever more closely with “traditional” telcos.
  • Enterprise and government telcos: these are other large organisations that are shifting from being “users” of telecoms, or building internal network assets, towards offering public telecom-type services.
  • Others: this is a catch-all category that spans various niche innovation models. One particular group here, decentralised/blockchain-based telcos, is analysed in more detail.

In each case, the category is examined briefly on the basis of:

  • Background and motivation of operators
  • Typical services and infrastructure being deployed
  • Examples (approx. 3-4 of each type)
  • Implications for mainstream telcos

Table of contents

  • Executive Summary
    • Overview
    • New telco categories and service areas
    • Recommendations for traditional fixed/mobile operators
    • Recommendations for vendors and suppliers
    • Recommendations for regulators, governments & advisors
  • Introduction
    • The historical landscape
    • Why are “new telcos” emerging now?
    • Where are new telcos likeliest to emerge?
    • Structure of this document
  • “Evolved” traditional telcos
    • Greenfield national networks
    • Telco systems integration units
    • “Crossover” Mobile, Fixed & cable operators
    • Extra-territorial telcos
  • Adjacent wireless providers
    • Neutral host network providers
    • TowerCos
    • FWA Fixed Wireless Access (WISPs)
    • Satellite players
  • Enterprise & government telcos
    • Industrial / vertical MNOs
    • Utility companies offering commercial telecom services
    • Enterprises’ corporate IT network service groups
    • Governments & public sector
  • New categories
    • Decentralised telcos (blockchain / cryptocurrency-based)
    • Other “new telco” categories
  • Conclusions

Related Research

 

Enter your details below to request an extract of the report

 

Private networks: Lessons so far and what next

The private networks market is rapidly developing

Businesses across a range of sectors are exploring the benefits of private networks in supporting their connected operations. However, there are considerable variations between national markets, reflecting spectrum and other regulatory actions, as well as industrial structure and other local factors. US, Germany, UK, Japan and the Nordics are among the leading markets.

Enterprises’ adoption of digitalisation and automation programmes is growing across various industries. The demand from enterprises stems from their need for customised networks to meet their vertical-specific connectivity requirements – as well as more basic considerations of coverage and cost of public networks, or alternative wireless technologies.

On the supply side, the development in cellular standards, including the virtualisation of the RAN and core elements, the availability of edge computing, and cloud management solutions, as well as the changing spectrum regulations are making private networks more accessible for enterprises. That said, many recently deployed private cellular networks still use “traditional” integrated small cells, or major vendors’ bundled solutions – especially in conservative sectors such as utilities and public safety.

Many new players are entering the market through different vertical and horizontal approaches and either competing or collaborating with traditional telcos. Traditional telcos, new telcos (mainly building private networks or offering network services), and other stakeholders are all exploring strategies to engage with the market and assessing the opportunities across the value chain as private network adoption increases.

Following up on our 2019 report Private and vertical cellular networks: Threats and opportunities, we explore the recent developments in the private network market, regulatory activities and policy around local and shared spectrum, and the different deployment approaches and business cases. In this report we address several interdependent elements of the private networks landscape

Enter your details below to request an extract of the report

What is a private network?

A private network leverages dedicated resources such as infrastructure and spectrum to provide precise coverage and capacity to specific devices and user groups. The network can be as small as a single radio cell covering a single campus or a location such as a manufacturing site (or even a single airplane), or it can span across a wider geographical area such as a nationwide railway network or regional utility grids.

Private networks is an umbrella term that can includes different LAN (or WAN) connectivity options such as Wi-Fi and LPWAN. However, more commonly, the term is being associated with private cellular networks based on 3GPP mobile technologies, i.e. LTE or 5G New Radio (NR).

Private networks are also different from in-building densification solutions like small cells and DAS which extend the coverage of public network or strengthen its capacity indoors or in highly dense locations. These solutions are still part of the public network and do not support customised control over the local network access or other characteristics. In future, some may support local private networks as well as public MNOs’ services.

Besides dedicated coverage and capacity, private networks can be customised in other aspects such as security, latency and integration with the enterprise internal systems to meet business specific requirements in ways that best effort public networks cannot.

Unlike public networks, private networks are not available to the public through commercially available devices and SIM cards. The network owner or operator controls the authorisation and the access to the network for permissioned devices and users. These definitions blur somewhat if the network is run by a “community” such as a municipality.

Typically, devices will not work outside the boundaries of their private network. That is a requirement in many use cases, such as manufacturing, where devices are not expected to continue functioning outside the premise. However, in a few areas, such as logistics, solutions can include the use of dual-SIM devices for both public and private networks or the use of other wide area technologies such as TETRA for voice. Moreover, agreements with public networks to enable roaming can be activated to support certain service continuity outside the private network boundaries.

While the technology and market are still developing, several terms are being used interchangeably to describe 3GPP private networks such dedicated networks, standalone networks, campus networks, local networks, vertical mobile network and non-public networks (NPN) as defined by the 3GPP.

The emergence of new telcos

Many telcos are not ready to support private networks demands from enterprises on large scale because they lack sufficient resources and expertise. Also, some enterprises might be reluctant to work with telcos for different reasons including their concerns over the traditional telcos’ abilities in vertical markets and a desire to control costs. This gap is already catalysing the emergence of new types of mobile network service providers, as opposed to traditional MNOs that operate national or regional public mobile networks.

These players essentially carry out the same roles as traditional MNOs in configuring the network, provisioning the service, and maintaining the private network infrastructure. Some of them may also have access to spectrum and buy network equipment and technologies directly from network equipment vendors. In addition to “new telcos” or “new operators”, other terms have been used to describe these players such as specialist operators and alternative operators. Throughout this report, we will use new telcos or specialist operators when describing these players collectively and traditional/public operators when referring to typical wide area national mobile network provider. New players can be divided into the following categories:

Possible private networks service providers

private networks ecosystem

Source: STL Partners

Table of content

  • Executive Summary
    • What next
    • Trends and recommendations for telcos, vendors, enterprises and policymakers
  • Introduction
  • Types of private network operators
    • What is a private network?
    • The emergence of new telcos
  • How various stakeholders are approaching the market
    • Technology development: Choosing between LTE and 5G
    • Private network technology vendors
    • Regional overview
    • Vertical overview
    • Mergers and acquisitions activities
  • The development of spectrum regulations
    • Unlicensed spectrum for LTE and 5G is an attractive option, but it remains limited
    • The rise of local spectrum licensing threatens some telcos
    • …but there is no one-size fits all in local spectrum licensing
    • How local spectrum licensing shapes the market and enterprise adoption
    • Recommendations for different stakeholders
  • Assessing the approaches to network implementation
    • Private network deployment models
    • Business models and roles for telcos
  • Conclusion and recommendations
  • Index
  • Appendix 1:  Examples of private networks deployments in 2020 – 2021

Enter your details below to request an extract of the report

SK Telecom’s journey in commercialising 5G

SK Telecom (SKT), Verizon and Telstra were among the first in the world to commence the commercialisation of 5G networks. SK Telecom and Verizon launched broadband-based propositions in 2018, but it was only in 2019, when 5G smartphones became available, that consumer, business and enterprise customers were really able to experience the networks.

Part 1 of our 3-part series looks at SKT’s journey and how its propositions have developed from when 5G was launched to the current time. It includes an analysis of both consumer and business offerings promoted on SKT’s website to identify the revenues streams that 5G is supporting now – as opposed to revenues that new 5G use cases might deliver in future.

Download the report extract

At launch, SKT introduced 5G-specific tariffs, that coupled large data allowances with unique apps and services designed to ensure data consumption and demonstrate the advantages of 5G access. 5G plans were more expensive than 4G plans, but the price of 5G data per MB was less than that for 4G to tempt customers to make the switch.

SKT’s well-documented approach to 5G has been regarded as inspirational by other telcos, though many consider a similar approach out-of-reach (e.g. for other telcos, coverage issues may limit their ability to charge a premium, or 5G-value-adding services may be lacking).

This report examines the market factors that have enabled and constrained SKT’s 5G actions, as it moves to deliver propositions for audiences beyond the early adopters and heavy data users. It identifies lessons in the commercialisation of 5G for those operators that are on their own 5G journeys and those that have yet to start.

5G performance to date

This analysis is based on the latest data available as we went to press in March 2021.

There were 10.9 million 5G subscribers in South Korea at end-November 2020 (15.5% of the total 70.5 million mobile subscriptions in the market, according to the Ministry of Science and ICT) and network coverage is reported to be more than 90% of the population (a figure that was already quoted in March 2020). Subscriber numbers grew by nearly one million in November 2020, boosted by the introduction of the iPhone 12, which sold 600K units that month.

SKT’s share of 5G subscribers was 46% (5.05 million) in November, to which SKT added a further 400K+ in December, reaching 5.48 million by the end of 2020.

The telco took just four and a half months to reach one million 5G subscribers following launch, significantly less than it had taken with 4G, which had attained the same milestone in eight months following 4G’s commercial launch in 2011.

SKT quarterly 5G subscriber numbers (millions)

SK Telecom 5G subscribers

Source: STL Partners, SK Telecom

SKT credits 5G subscriber growth for its 2.8% MNO revenue increase in the year to December 2020, however the impact on ARPU is less clear. An initial increase in overall ARPU followed the introduction of higher priced 5G plans at launch, but ARPU has fallen back slightly since then, possibly due to COVID-19 economic factors.

SKT total ARPU trend following 5G launch

SK Telecom 5G ARPU

Source: STL Partners

In its 2020 year-end earnings call, SKT reported that it was top of the leader board in South Korea’s three customer satisfaction surveys and in the 5G quality assessment by the Ministry of Science and ICT.

As a cautionary note, Hong Jung-min of the ruling Democratic Party reported that 500K 5G users had switched to 4G LTE during August 2020 due to network issues, including limited coverage, slower than expected speeds. It is unclear how SKT was affected by this.

 

Table of Contents

  • Executive Summary
    • Recommendations
    • Next steps
  • Introduction
  • 5G performance to date
  • Details of launch
  • Consumer propositions
    • At launch
    • …And now
  • Business and enterprise propositions
    • At launch
    • …And now
  • Analysis of 5G market development
    • What next?
    • mmWave
  • Conclusion
  • Appendix 1

Download the report extract

Commerce and connectivity: A match made in heaven?

Rakuten and Reliance: The exceptions or the rule?

Over the past decade, STL Partners has analysed how connectivity, commerce and content have become increasingly interdependent – as both shopping and entertainment go digital, telecoms networks have become key distribution channels for all kinds of consumer businesses. Equally, the growing availability of digital commerce and content are driving demand for connectivity both inside and outside the home.

To date, the top tier of consumer Internet players – Google, Apple, Amazon, Alibaba, Tencent and Facebook – have tended to focus on trying to dominate commerce and content, largely leaving the provision of connectivity to the conventional telecoms sector. But now some major players in the commerce market, such as Rakuten in Japan and Reliance in India, are pushing into connectivity, as well as content.

This report considers whether Rakuten’s and Reliance’s efforts to combine content, commerce and connectivity into a single package is a harbinger of things to come or the exceptions that will prove the longstanding rule that telecoms is a distinct activity with few synergies with adjacent sectors. The provision of connectivity has generally been regarded as a horizontal enabler for other forms of economic activity, rather than part of a vertically-integrated service stack.

This report also explores the extent to which new technologies, such as cloud-native networks and open radio access networks, and an increase in licence-exempt spectrum, are making it easier for companies in adjacent sectors to provide connectivity. Two chapters cover Google and Amazon’s connectivity strategies respectively, analysing the moves they have made to date and what they may do in future. The final section of this report draws some conclusions and then considers the implications for telcos.

This report builds on earlier STL Partners research, including:

Enter your details below to request an extract of the report

Mixing commerce and connectivity

Over the past decade, the smartphone has become an everyday shopping tool for billions of people, particularly in Asia. As a result, the smartphone display has become an important piece of real estate for the global players competing for supremacy in the digital commerce market. That real estate can be accessed via a number of avenues – through the handset’s operating system, a web browser, mobile app stores or through the connectivity layer itself.

As Google and Apple exercise a high degree of control over smartphone operating systems, popular web browsers and mobile app stores, other big digital commerce players, such as Amazon, Facebook and Walmart, risk being marginalised. One way to avoid that fate may be to play a bigger role in the provision of wireless connectivity as Reliance Industries is doing in India and Rakuten is doing in Japan.

For telcos, this is potentially a worrisome prospect. By rolling out its own greenfield mobile network, e-commerce, and financial services platform Rakuten has brought disruption and low prices to Japan’s mobile connectivity market, putting pressure on the incumbent operators. There is a clear danger that digital commerce platforms use the provision of mobile connectivity as a loss leader to drive to traffic to their other services.

Table of Contents

  • Executive Summary
  • Introduction
  • Mixing connectivity and commerce
    • Why Rakuten became a mobile network operator
    • Will Rakuten succeed in connectivity?
    • Why hasn’t Rakuten Mobile broken through?
    • Borrowing from the Amazon playbook
    • How will the hyperscalers react?
  • New technologies, new opportunities
    • Capacity expansion
    • Unlicensed and shared spectrum
    • Cloud-native networks and Open RAN attract new suppliers
    • Reprogrammable SIM cards
  • Google: Knee deep in connectivity waters
    • Google Fiber and Fi maintain a holding pattern
    • Google ramps up and ramps down public Wi-Fi
    • Google moves closer to (some) telcos
    • Google Cloud targets telcos
    • Big commitment to submarine/long distance infrastructure
    • Key takeaways: Vertical optimisation not integration
  • Amazon: A toe in the water
    • Amazon Sidewalk
    • Amazon and CBRS
    • Amazon’s long distance infrastructure
    • Takeaways: Control over connectivity has its attractions
  • Conclusions and implications for telcos in digital commerce/content
  • Index

Enter your details below to request an extract of the report

Fixed wireless access growth: To 20% homes by 2025

=======================================================================================

Download the additional file on the left for the PPT chart pack accompanying this report

=======================================================================================

Fixed wireless access growth forecast

Fixed Wireless Access (FWA) networks use a wireless “last mile” link for the final connection of a broadband service to homes and businesses, rather than a copper, fibre or coaxial cable into the building. Provided mostly by WISPs (Wireless Internet Service Providers) or mobile network operators (MNOs), these services come in a wide range of speeds, prices and technology architectures.

Some FWA services are just a short “drop” from a nearby pole or fibre-fed hub, while others can work over distances of several kilometres or more in rural and remote areas, sometimes with base station sites backhauled by additional wireless links. WISPs can either be independent specialists, or traditional fixed/cable operators extending reach into areas they cannot economically cover with wired broadband.

There is a fair amount of definitional vagueness about FWA. The most expansive definitions include cheap mobile hotspots (“Mi-Fi” devices) used in homes, or various types of enterprise IoT gateway, both of which could easily be classified in other market segments. Most service providers don’t give separate breakouts of deployments, while regulators and other industry bodies report patchy and largely inconsistent data.

Our view is that FWA is firstly about providing permanent broadband access to a specific location or premises. Primarily, this is for residential wireless access to the Internet and sometimes typical telco-provided services such as IPTV and voice telephony. In a business context, there may be a mix of wireless Internet access and connectivity to corporate networks such as VPNs, again provided to a specific location or building.

A subset of FWA relates to M2M usage, for instance private networks run by utility companies for controlling grid assets in the field. These are typically not Internet-connected at all, and so don’t fit most observers’ general definition of “broadband access”.

Usually, FWA will be marketed as a specific service and package by some sort of network provider, usually including the terminal equipment (“CPE” – customer premise equipment), rather than allowing the user to “bring their own” device. That said, lower-end (especially 4G) offers may be SIM-only deals intended to be used with generic (and unmanaged) portable hotspots.
There are some examples of private network FWA, such as a large caravan or trailer park with wireless access provided from a central point, and perhaps in future municipal or enterprise cellular networks giving fixed access to particular tenant structures on-site – for instance to hangars at an airport.

Enter your details below to request an extract of the report

FWA today

Today, fixed-wireless access (FWA) is used for perhaps 8-9% of broadband connections globally, although this varies significantly by definition, country and region. There are various use cases (see below), but generally FWA is deployed in areas without good fixed broadband options, or by mobile-only operators trying to add an additional fixed revenue stream, where they have spare capacity.

Fixed wireless internet access fits specific sectors and uses, rather than the overall market

FWA Use Cases

Source: STL Partners

FWA has traditionally been used in sparsely populated rural areas, where the economics of fixed broadband are untenable, especially in developing markets without existing fibre transport to towns and villages, or even copper in residential areas. Such networks have typically used unlicensed frequency bands, as there is limited interference – and little financial justification for expensive spectrum purchases. In most cases, such deployments use proprietary variants of Wi-Fi, or its ill-fated 2010-era sibling WiMAX.

Increasingly however, FWA is being used in more urban settings, and in more developed market scenarios – for example during the phase-out of older xDSL broadband, or in places with limited or no competition between fixed-network providers. Some cellular networks primarily intended for mobile broadband (MBB) have been used for fixed usage as well, especially if spare capacity has been available. 4G has already catalysed rapid growth of FWA in numerous markets, such as South Africa, Japan, Sri Lanka, Italy and the Philippines – and 5G is likely to make a further big difference in coming years. These mostly rely on licensed spectrum, typically the national bands owned by major MNOs. In some cases, specific bands are used for FWA use, rather than sharing with normal mobile broadband. This allows appropriate “dimensioning” of network elements, and clearer cost-accounting for management.

Historically, most FWA has required an external antenna and professional installation on each individual house, although it also gets deployed for multi-dwelling units (MDUs, i.e. apartment blocks) as well as some non-residential premises like shops and schools. More recently, self-installed indoor CPE with varying levels of price and sophistication has helped broaden the market, enabling customers to get terminals at retail stores or delivered direct to their home for immediate use.

Looking forward, the arrival of 5G mass-market equipment and larger swathes of mmWave and new mid-band spectrum – both licensed and unlicensed – is changing the landscape again, with the potential for fibre-rivalling speeds, sometimes at gigabit-grade.

Enter your details below to request an extract of the report

Table of contents

  • Executive Summary
  • Introduction
    • FWA today
    • Universal broadband as a goal
    • What’s changed in recent years?
    • What’s changed because of the pandemic?
  • The FWA market and use cases
    • Niche or mainstream? National or local?
    • Targeting key applications / user groups
  • FWA technology evolution
    • A broad array of options
    • Wi-Fi, WiMAX and close relatives
    • Using a mobile-primary network for FWA
    • 4G and 5G for WISPs
    • Other FWA options
    • Customer premise equipment: indoor or outdoor?
    • Spectrum implications and options
  • The new FWA value chain
    • Can MNOs use FWA to enter the fixed broadband market?
    • Reinventing the WISPs
    • Other value chain participants
    • Is satellite a rival waiting in the wings?
  • Commercial models and packages
    • Typical pricing and packages
    • Example FWA operators and plans
  • STL’s FWA market forecasts
    • Quantitative market sizing and forecast
    • High level market forecast
  • Conclusions
    • What will 5G deliver – and when and where?
  • Index

5G: Bridging hype, reality and future promises

The 5G situation seems paradoxical

People in China and South Korea are buying 5G phones by the million, far more than initially expected, yet many western telcos are moving cautiously. Will your company also find demand? What’s the smart strategy while uncertainty remains? What actions are needed to lead in the 5G era? What questions must be answered?

New data requires new thinking. STL Partners 5G strategies: Lessons from the early movers presented the situation in late 2019, and in What will make or break 5G growth? we outlined the key drivers and inhibitors for 5G growth. This follow on report addresses what needs to happen next.

The report is informed by talks with executives of over three dozen companies and email contacts with many more, including 21 of the first 24 telcos who have deployed. This report covers considerations for the next three years (2020–2023) based on what we know today.

“Seize the 5G opportunity” says Ke Ruiwen, Chairman, China Telecom, and Chinese reports claimed 14 million sales by the end of 2019. Korea announced two million subscribers in July 2019 and by December 2019 approached five million. By early 2020, The Korean carriers were confident 30% of the market will be using 5G by the end of 2020. In the US, Verizon is selling 5G phones even in areas without 5G services,  With nine phone makers looking for market share, the price in China is US$285–$500 and falling, so the handset price barrier seems to be coming down fast.

Yet in many other markets, operators progress is significantly more tentative. So what is going on, and what should you do about it?

Enter your details below to request an extract of the report

5G technology works OK

22 of the first 24 operators to deploy are using mid-band radio frequencies.

Vodafone UK claims “5G will work at average speeds of 150–200 Mbps.” Speeds are typically 100 to 500 Mbps, rarely a gigabit. Latency is about 30 milliseconds, only about a third better than decent 4G. Mid-band reach is excellent. Sprint has demonstrated that simply upgrading existing base stations can provide substantial coverage.

5G has a draft business case now: people want to buy 5G phones. New use cases are mostly years away but the prospect of better mobile broadband is winning customers. The costs of radios, backhaul, and core are falling as five system vendors – Ericsson, Huawei, Nokia, Samsung, and ZTE – fight for market share. They’ve shipped over 600,000 radios. Many newcomers are gaining traction, for example Altiostar won a large contract from Rakuten and Mavenir is in trials with DT.

The high cost of 5G networks is an outdated myth. DT, Orange, Verizon, and AT&T are building 5G while cutting or keeping capex flat. Sprint’s results suggest a smart build can quickly reach half the country without a large increase in capital spending. Instead, the issue for operators is that it requires new spending with uncertain returns.

The technology works, mostly. Mid-band is performing as expected, with typical speeds of 100–500Mbps outdoors, though indoor performance is less clear yet. mmWave indoor is badly degraded. Some SDN, NFV, and other tools for automation have reached the field. However, 5G upstream is in limited use. Many carriers are combining 5G downstream with 4G upstream for now. However, each base station currently requires much more power than 4G bases, which leads to high opex. Dynamic spectrum sharing, which allows 5G to share unneeded 4G spectrum, is still in test. Many features of SDN and NFV are not yet ready.

So what should companies do? The next sections review go-to-market lessons, status on forward-looking applications, and technical considerations.

Early go-to-market lessons

Don’t oversell 5G

The continuing publicity for 5G is proving powerful, but variable. Because some customers are already convinced they want 5G, marketing and advertising do not always need to emphasise the value of 5G. For those customers, make clear why your company’s offering is the best compared to rivals’. However, the draw of 5G is not universal. Many remain sceptical, especially if their past experience with 4G has been lacklustre. They – and also a minority swayed by alarmist anti-5G rhetoric – will need far more nuanced and persuasive marketing.

Operators should be wary of overclaiming. 5G speed, although impressive, currently has few practical applications that don’t already work well over decent 4G. Fixed home broadband is a possible exception here. As the objective advantages of 5G in the near future are likely to be limited, operators should not hype features that are unrealistic today, no matter how glamorous. If you don’t have concrete selling propositions, do image advertising or use happy customer testimonials.

Table of Contents

  • Executive Summary
  • Introduction
    • 5G technology works OK
  • Early go-to-market lessons
    • Don’t oversell 5G
    • Price to match the experience
    • Deliver a valuable product
    • Concerns about new competition
    • Prepare for possible demand increases
    • The interdependencies of edge and 5G
  • Potential new applications
    • Large now and likely to grow in the 5G era
    • Near-term applications with possible major impact for 5G
    • Mid- and long-term 5G demand drivers
  • Technology choices, in summary
    • Backhaul and transport networks
    • When will 5G SA cores be needed (or available)?
    • 5G security? Nothing is perfect
    • Telco cloud: NFV, SDN, cloud native cores, and beyond
    • AI and automation in 5G
    • Power and heat

Enter your details below to request an extract of the report

What will make or break 5G growth?

5G is a long way from delivering on the hype

This report is a crib sheet outlining the 18 factors that STL Partners believes will have a significant impact on the development of the 5G market. We put forward our core assumption on how we expect each factor to affect the 5G market, and highlight the upside and downside risks to our assumption.

The purpose of the report is to pull together knowledge from across different areas – networks, enterprise services, consumer services, regulatory and commercial environments – to give a holistic view of what we think will influence 5G development. Although everyone in the industry has an eye on how 5G is developing, often this is from a relatively narrow view of the market. But the reality is that over the long term, 5G will not be just another G, but an amalgamation of many emerging and maturing network technologies, increasingly bespoke and fragmented enterprise and consumer demands, with high government expectations for contributions to economic growth. So to understand how quickly or slowly 5G will deliver on these promises, operators, vendors, customers and governments need to consider how a wide range of factors are playing out in their countries. By benchmarking their progress against our core assumptions, upside risks and downside risks, industry players can make a well-rounded assessment of whether they are ahead or behind in 5G development and identify ways to drive the market forward.

This report builds on STL’s extensive coverage of 5G and other enabling technologies:

Key factors influencing 5G development

We have organised the factors affecting 5G development into three categories:

  1. Primary drivers: We believe these will have the greatest impact on 5G development, owing to their influence over the cost and ease of deploying network infrastructure and services, and accessibility and value of 5G connectivity to end-users.
  2. Secondary drivers: These factors have a less direct impact on the 5G market development, especially over the short term, or will only influence a specific part of the market, such as fixed wireless access. However, in some instances telcos have more control over secondary factors than the primary ones, so depending on their strategies, secondary factors could have a disproportionate impact on 5G market development.
  3. Wildcards: These are factors which are less likely or predictable, but that if they do occur would have a decisive impact on how the 5G market (and wider telecoms industry) evolves.

Enter your details below to request an extract of the report

The 5G-aliser

Over the coming quarters, we will use these 5G factors as a means of measuring progress. The diagram below shows the inaugural 5G-aliser. The top row shows the supply and demand levels for 5G, the middle row shows the absolute level impact of each driver on 5G development, i.e. how important each driver is to 5G growth right now , and the bottom row shows the relative position of each driver. While our intention was to start all drivers at the same relative level, reflecting our core assumption as of March 2020, given the rapid escalation of the COVID-19 pandemic, we have dropped this driver into the red already as we expect telcos’ first priority during the crisis to be on keeping their current operations running smoothly.

The 5G-aliser, March 2020

STL 5G-a-liser March 2020

Source: STL Partners

On a quarterly basis we will monitor the development of the 5G market and update the markers for each driver to reflect the emergence of upside or downside risks, and rising or falling importance of different growth drivers. Evidently, some factors are dependent on local market conditions, so we will also evaluate the drivers on a market by market basis, when important local developments occur.

Table of contents

  • Executive Summary
    • Key takeaways
    • The 5G-aliser
  • Introduction
  • Key factors influencing 5G development
    • Primary drivers
    • Secondary factors
    • Wildcards
  • Conclusions

Enter your details below to request an extract of the report

5G strategies: Lessons from the early movers

What’s the best 5G strategy?

When we published the report 5G: The First Three Years in December 2018, we identified that most of the hype – from autonomous cars to surgeons operating from the beach – is at best several years from significant volume. There are no “killer apps” in sight. Telco growth from 5G deployments will be based on greater capacity, lower cost and customer willingness to buy.

If carrier revenue doesn’t rise, the pressure to cut costs will grow

For the last five years, carrier revenue has been almost flat in most countries and we believe this trend is likely to continue.

STL Partners forecasts less than 1% CAGR in telecoms revenues

Mobile and fixed revenue forecast to 2022Source: STL Partners

In our 5G Strategies report series, STL Partners set out to established what 5G actually offers that will enable carriers to make more money in the next few years.

It builds on STL Partners’ previous insights into 5G, including:

The report explores the most recent activities in 5G by operators, vendors, phone makers and chipmakers.

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

High-level takeaways from initial 5G deployments

This section provides a high-level overview of the current efforts and activities of select telcos around the world. Broadly, it shows that almost all are pushing ahead on 5G, some much faster than others.

  • Korea is the world’s most advanced 5G market, with two million Koreans having bought 5G phones by July.
    • Korea’s 3.5 GHz networks typically deliver download speeds of 100 – 500 Mbps. SK Telecom and KT are using Samsung equipment. LG Uplus is mostly Huawei. There is little evidence that either vendor has demonstrated superior performance. Korea’s government, supported by the operators, made a decision that speeding ahead on 5G would be valuable prestige and improve the Korean economy. Korea expects to have 200,000 radios in place by the end of 2019, compared with BT which anticipates fewer than 2,500.
  • China Mobile has confirmed Huawei’s estimate that the price of 5G phones will fall to under US$300 in 2020, which will stimulate a sharp increase in demand.
    • The Chinese and the Koreans are investing heavily in augmented and virtual reality and games for 5G. This will take time to mature.
  • Verizon has taken a radical approach to simplifying its core and transport network, partly in preparation for 5G but more generally to improve its cost of delivery. This simplification has allowed it to maintain and even cut some CAPEX investments while delivering performance improvements.
    • 5G mmWave in 28GHz works and often delivers a gigabit. The equipment is of modest size and cost. However, the apparent range of around 200 metres is disappointing (Verizon has not confirmed the range but there is evidence it is short). Verizon expects better range.
  • Sprint’s 160MHz of spectrum at 2.5GHz gives it remarkably wide coverage at 100 – 500 Mbps download speeds. Massive MIMO (multiple-input, multiple-output with 64 or more antennas) at 2.5 GHz works so well that Sprint is achieving great coverage without adding many small cells.
  • Etisalat (UAE) shows that any country that can afford it can deliver 5G today. Around the Gulf, Ooredoo (Kuwait, Qatar), Vodaphone (Qatar), du Telecom (UAE) and STC (Saudi Arabia) are speeding construction to avoid falling behind.
  • BT claims it will “move quickly” and turn on 100 cells per month (which is relatively few in comparison to Korea). BT’s website also claims that 5G has a latency speed of <1 ms, but the first measured latency is 31 ms. At Verizon, latency tests are often a little better than the announced 30 ms. Edge Networks, if deployed, can cut the latency by about half. A faster air interface, Ultra-Reliable Low-Latency Communication (URLLC), expected around 2023, could shave off another 5-7 ms. The business case for URLLC is unproven and it remains to be seen how widely it is deployed. In the rest of the section we look at these and other operators in a little more detail.

Live commercial 5G deployments globally, August 2019

Live 5G commercial deployments as of August 2019

This is the best available information on 5G deployments globally as of August 2019, gathered from both public and private sources. We have excluded operators that have announced 5G launches, but where services are not yet available for consumers to buy, such as AT&T in the US and Deutsche Telekom in Germany.

Table of contents

  • Executive Summary
  • Introduction
    • If carrier revenue doesn’t rise, the pressure to cut costs will grow
  • Operators
    • High-level takeaways
    • European operators
    • Asia Pacific and Middle Eastern operators
    • North America
  • Phone makers
  • 5G system vendors
    • Datang
    • Samsung
    • Ericsson
    • Huawei
    • Nokia
  • Chip makers
    • Qualcomm
    • Samsung
    • Intel
    • MediaTek
    • Huawei-HiSilicon
  • Conclusions: (Almost) all systems go

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

5G: The first three years

The near future of 5G

Who, among telecoms operators, are 5G leaders? Verizon Wireless is certainly among the most enthusiastic proponents.

On October 1, 2018, Verizon turned on the world’s first major 5G network. It is spending US$20 billion to offer 30 million homes millimetre wave 5G, often at speeds around a gigabit. One of the first homes in Houston “clocked speeds of 1.3 gigabits per second at 2,000 feet.”  CEO Vestberg expects to cover the whole country by 2028, some with 3.5 GHz. 5G: The first three years cuts through the hype and confusion to provide the industry a clear picture of the likely future. A companion report, 5G smart strategies, explores how 5G helps carriers make more money and defeat the competition.

This report was written by Dave Burstein with substantial help from Andrew Collinson and Dean Bubley.

What is 5G?

In one sense, 5G is just a name for all the new technologies now being widely deployed. It’s just better mobile broadband. It will not change the world anytime soon.

There are two very different flavours of 5G:

  • Millimetre wave: offers about 3X the capacity of mid-band or the best 4G. Spectrum used is from 20 GHz to over 60 GHz. Verizon’s mmWave system is designed to deliver 1 gigabit downloads to most customers and 5 gigabits shared. 26 GHz in Europe & 28 GHz in the U.S. are by far the most common.
  • Low and mid-band: uses 4G hardware and “New Radio” software. It is 60-80% less capable on average than millimetre wave and very similar in performance to 4G TD-LTE. 3.3 GHz – 4.2 GHz is by far the most important band.

To begin, a few examples.

5G leaders are deploying millimetre wave

Verizon’s is arguably currently the most advanced 5G network in the world. Perhaps most surprisingly, the “smart build” is keeping costs so low capital spending is coming down. Verizon’s trials found millimetre wave performance much better than expected. In some cases, 5G capacity allowed reducing the number of cells.

Verizon will sell fixed wireless outside its incumbent territory. It has ~80 million customers out of district. Goldman Sachs estimates it will add 8 million fixed wireless by 2023 and more than pay for the buildout.

Verizon CEO Hans Vestberg says he believes mmWave capacity will allow very attractive offerings that will win customers away from the competition.

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

What are the other 5G leaders doing?

Telefónica Deutschland has similar plans, hoping to blow open the German market with mmWave to a quarter of the country. Deutsche Telekom and Vodafone are sticking with the much slower mid-band 5G and could be clobbered.

Most 5G will be slower low and mid-band formerly called 4G

80% or more of 5G worldwide the next three years will not be high-speed mmWave. Industry group 3GPP decided early in 2018 to call anything running New Radio software “5G.” In practice, almost any currently shipping 4G radio can add on the software and be called “5G.” The software was initially said to raise capacity between 10% and 52%. That’s 60% to 80% slower than mmWave. However, improved 4G technology has probably cut the difference by more than half. That’s 60% to 80% slower than mmWave. It’s been called “faux 5G” and “5G minus,” but few make the distinction. T-Mobile USA promises 5G to the entire country by 2020 without a large investment. Neville Ray is blanketing the country with 4G in 20 MHz of the new 600 MHz band. That doesn’t require many more towers due to the long reach of low frequencies. T-Mobile will add NR software for a marketing push.

In an FCC presentation, Ray said standalone T-Mobile will have a very wide 5G coverage but at relatively low speeds. Over 85% of users will connect at less than 100 megabits. The median “5G” connection will be 40-70 megabits. Some users will only get 10-20 megabits, compared to a T-Mobile average today of over 30 megabits. Aggregating 600 MHz NR with other T-Mobile bands now running LTE would be much faster but has not been demonstrated.

While attesting to the benefits of the T-Mobile-Sprint deal, Neville claimed that using Sprint spectrum at 2500 MHz and 11,000 Sprint towers will make a far more robust offering by 2024. 10% of this would be mmWave.

In the final section of this report, I discuss 5G smart strategy: “5G” is a magic marketing term. It will probably sell well even if 4G speeds are similar. The improved sales can justify a higher budget.

T-Mobile Germany promises nationwide 5G by 2025. That will be 3.5 GHz mid-band, probably using 100 MHz of spectrum. Germany has just set aside 400 MHz of spectrum at 3.5 GHz. DT, using 100 MHz of 3.5 GHz, will deliver 100–400 megabit downloads to most.

100–400 megabits is faster than much of T-Mobile’s DSL. It soon will add fixed mobile in some rural areas. In addition, T-Mobile is selling a combined wireless and DSL router. The router uses the DSL line preferably but can also draw on the wireless when the user requires more speed.

China has virtually defined itself as a 5G leader by way of its government’s clear intent for the operators. China Mobile plans two million base stations running 2.5 GHz, which has much better reach than radio in the 3.5 GHz spectrum. In addition, the Chinese telcos have been told to build a remarkable edge network. Minister Miao Wei wants “90% of China within 25 ms of a server.” That’s extremely ambitious but the Chinese have delivered miracles before. 344 million Chinese have fibre to the home, most built in four years.

Telus, Canada’s second incumbent, in 2016 carefully studied the coming 5G choices. The decision was to focus capital spending on more fibre in the interim. 2016 was too early to make 5G plans, but a strong fibre network would be crucial. Verizon also invested heavily in fibre in 2016 and 2017, which now is speeding 5G to market. Like Verizon, Telus sees the fibre paying off in many ways. It is doing fibre to the home, wireless backhaul, and service to major corporations. CEO Darren Entwistle in November 2018 spoke at length about its future 5G, including the importance of its large fibre build, although he hasn’t announced anything yet.

There is a general principle that if it’s too early to invest in 5G, it’s a good idea to build as much fibre as you can in the interim.

Benefits of 5G technology

  • More broadband capacity and speed. Most of the improvement in capacity comes from accessing more bandwidth through carrier aggregation, and many antenna MIMO. Massive MIMO has shipped as part of 4G since 2016 and carrier aggregation goes back to 2013. All 5G phones work on 4G as well, connecting as 4G where there is no 5G signal.
  • Millimetre wave roughly triples capacity. Low and mid-band 5G runs on the same hardware as 4G. The only difference to 4G is NR software, which adds only modestly to capacity.
  • Drastically lower cost per bit. Verizon CEO Lowell McAdam said, “5G will deliver a megabit of service for about 1/10th of what 4G does.”
  • Reduced latency. 1 ms systems will mostly only be in the labs for several more years, but Verizon’s and other systems deliver speed from the receiver to the cell of about 10 milliseconds. For practical purposes, latency should be considered 15 ms to 50 ms and more, unless and until large “edge Servers” are installed. Only China is likely to do that in the first three years.

The following will have a modest effect, at most, in the next three years: Autonomous cars, remote surgery, AR/VR, drones, IoT, and just about all the great things promised beyond faster and cheaper broadband. Some are bogus, others not likely to develop in our period. 5G leaders will need to capitalise on near-term benefits.

Contents:

  • Executive Summary
  • Some basic timelines
  • What will 5G deliver?
  • What will 5G be used for?
  • Current plans reviewed in the report
  • Introduction
  • What is 5G?
  • The leaders are deploying millimetre wave
  • Key dates
  • What 5G and advanced 4G deliver
  • Six things to know
  • Six myths
  • 5G “Smart Build” brings cost down to little more than 4G
  • 5G, Edge, Cable and IoT
  • Edge networks in 5G
  • “Cable is going to be humongous” – at least in the U.S.
  • IoT and 5G
  • IoT and 5G: Does anyone need millions of connections?
  • Current plans of selected carriers (5G leaders)
  • Who’s who
  • Phone makers
  • The system vendors
  • Chip makers
  • Spectrum bands in the 5G era
  • Millimetre wave
  • A preview of 5G smart strategies
  • How can carriers use 5G to make more money?
  • The cold equations of growth

Figures:

  • Figure 1: 20 years of NTT DOCOMO capex
  • Figure 2: Verizon 5G network plans
  • Figure 3: Qualcomm’s baseband chip and radio frequency module
  • Figure 4: Intel 5G chip – Very limited 5G production capability until late 2019
  • Figure 5: Overview of 5G spectrum bands
  • Figure 6: 5G experience overview
  • Figure 7: Cisco VNI forecast of wireless traffic growth between 2021–2022

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

Indoor wireless: A new frontier for IoT and 5G

Introduction to Indoor Wireless

A very large part of the usage of mobile devices – and mobile and other wireless networks – is indoors. Estimates vary but perhaps 70-80% of all wireless data is used while fixed or “nomadic”, inside a building. However, the availability and quality of indoor wireless connections (of all types) varies hugely. This impacts users, network operators, businesses and, ultimately, governments and society.

Whether the use-case is watching a YouTube video on a tablet from a sofa, booking an Uber from a phone in a company’s reception, or controlling a moving robot in a factory, the telecoms industry needs to give much more thought to the user-requirements, technologies and obstacles involved. This is becoming ever more critical as sensitive IoT applications emerge, which are dependent on good connectivity – and which don’t have the flexibility of humans. A sensor or piece of machinery cannot move and stand by a window for a better signal – and may well be in parts of a building that are inaccessible to both humans and many radio transmissions.

While mobile operators and other wireless service providers have important roles to play here, they cannot do everything, everywhere. They do not have the resources, and may lack site access. Planning, deploying and maintaining indoor coverage can be costly.

Indeed, the growing importance and complexity is such that a lot of indoor wireless infrastructure is owned by the building or user themselves – which then brings in further considerations for policymakers about spectrum, competition and more. There is a huge upsurge of interest in both improved Wi-Fi, and deployments of private cellular networks indoors, as some organisations recognise connectivity as so strategically-important they wish to control it directly, rather than relying on service providers. Various new classes of SP are emerging too, focused on particular verticals or use-cases.

In the home, wireless networks are also becoming a battleground for “ecosystem leverage”. Fixed and cable networks want to improve their existing Wi-Fi footprint to give “whole home” coverage worthy of gigabit fibre or cable connections. Cellular providers are hoping to swing some residential customers to mobile-only subscriptions. And technology firms like Google see home Wi-Fi as a pivotal element to anchor other smart-home services.

Large enterprise and “campus” sites like hospitals, chemical plants, airports, hotels and shopping malls each have complex on-site wireless characteristics and requirements. No two are alike – but all are increasingly dependent on wireless connections for employees, visitors and machines. Again, traditional “outdoors” cellular service-providers are not always best-placed to deliver this – but often, neither is anyone else. New skills and deployment models are needed, ideally backed with more cost—effective (and future-proofed) technology and tools.

In essence, there is a conflict between “public network service” and “private property” when it comes to wireless connectivity. For the fixed network, there is a well-defined “demarcation point” where a cable enters the building, and ownership and responsibilities switch from telco to building owner or end-user. For wireless, that demarcation is much harder to institutionalise, as signals propagate through walls and windows, often in unpredictable and variable fashion. Some large buildings even have their own local cellular base stations, and dedicated systems to “pipe the signal through the building” (distributed antenna systems, DAS).

Where is indoor coverage required?

There are numerous sub-divisions of “indoors”, each of which brings its own challenges, opportunities and market dynamics:

• Residential properties: houses & apartment blocks
• Enterprise “carpeted offices”, either owned/occupied, or multi-tenant
• Public buildings, where visitors are more numerous than staff (e.g. shopping malls, sports stadia, schools), and which may also have companies as tenants or concessions.
• Inside vehicles (trains, buses, boats, etc.) and across transport networks like metro systems or inside tunnels
• Industrial sites such as factories or oil refineries, which may blend “indoors” with “onsite”

In addition to these broad categories are assorted other niches, plus overlaps between the sectors. There are also other dimensions around scale of building, single-occupant vs. shared tenancy, whether the majority of “users” are humans or IoT devices, and so on.

In a nutshell: indoor wireless is complex, heterogeneous, multi-stakeholder and often expensive to deal with. It is no wonder that most mobile operators – and most regulators – focus on outdoor, wide-area networks both for investment, and for license rules on coverage. It is unreasonable to force a telco to provide coverage that reaches a subterranean, concrete-and-steel bank vault, when their engineers wouldn’t even be allowed access to it.

How much of a problem is indoor coverage?

Anecdotally, many locations have problems with indoor coverage – cellular networks are patchy, Wi- Fi can be cumbersome to access and slow, and GPS satellite location signals don’t work without line- of-sight to several satellites. We have all complained about poor connectivity in our homes or offices, or about needing to stand next to a window. With growing dependency on mobile devices, plus the advent of IoT devices everywhere, for increasingly important applications, good wireless connectivity is becoming more essential.

Yet hard data about indoor wireless coverage is also very patchy. UK regulator Ofcom is one of the few that reports on availability / usability of cellular signals, and few regulators (Japan’s is another) enforce it as part of spectrum licenses. Fairly clearly, it is hard to measure, as operators cannot do systematic “drive tests” indoors, while on-device measurements usually cannot determine if they are inside or outside without being invasive of the user’s privacy. Most operators and regulators estimate coverage, based on some samples plus knowledge of outdoor signal strength and typical building construction practices. The accuracy (and up-to-date assumptions) is highly questionable.

Indoor coverage data is hard to find

Contents:

  • Executive Summary
  • Likely outcomes
  • What telcos need to do
  • Introduction to Indoor Wireless
  • Overview
  • Where is indoor coverage required?
  • How much of a problem is indoor coverage?
  • The key science lesson of indoor coverage
  • The economics of indoor wireless
  • Not just cellular coverage indoors
  • Yet more complications are on the horizon…
  • The role of regulators and policymakers
  • Systems and stakeholders for indoor wireless
  • Technical approaches to indoor wireless
  • Stakeholders for indoor wireless
  • Home networking: is Mesh Wi-Fi the answer?
  • Is outside-in cellular good enough for the home on its own?
  • Home Wi-Fi has complexities and challenges
  • Wi-Fi innovations will perpetuate its dominance
  • Enterprise/public buildings and the rise of private cellular and neutral host models
  • Who pays?
  • Single-operator vs. multi-operator: enabling “neutral hosts”
  • Industrial sites and IoT
  • Conclusions
  • Can technology solve MNO’s “indoor problem”?
  • Recommendations

Figures:

  • Indoor coverage data is hard to find
  • Insulation impacts indoor penetration significantly
  • 3.5GHz 5G might give acceptable indoor coverage
  • Indoor wireless costs and revenues
  • In-Building Wireless face a dynamic backdrop
  • Key indoor wireless architectures
  • Different building types, different stakeholders
  • Whole-home meshes allow Wi-Fi to reach all corners of the building
  • Commercial premises now find good wireless essential
  • Neutral Hosts can offer multi-network coverage to smaller sites than DAS
  • Every industrial sector has unique requirements for wireless

5G: The spectrum game is changing – but how to play?

Introduction

Why does spectrum matter?

Radio spectrum is a key “raw material” for mobile networks, together with evolution of the transmission technology itself, and the availability of suitable cell-site locations. The more spectrum is made available for telcos, the more capacity there is overall for current and future mobile networks. The ability to provide good coverage is also determined largely by spectrum allocations.

Within the industry, we are accustomed to costly auction processes, as telcos battle for tranches of frequencies to add capacity, or support new generations of technology. In contrast, despite the huge costs to telcos for different spectrum allocation, most people have very little awareness of what bands their phones support, other than perhaps that it can use ‘mobile/cellular’ and WiFi.

Most people, even in the telecoms industry, don’t grasp the significance of particular numbers of MHz or GHz involved (Hz = number of cycles per second, measured in millions or billions). And that is just the tip of the jargon and acronym iceberg – a full discussion of mobile RAN (radio access network) technology involves different sorts of modulation, multiple antennas, propagation metrics, path loss (in decibels, dB) and so forth.

Yet as 5G pulls into view, it is critical to understand the process by which new frequencies will be released by governments, or old ones re-used by the mobile industry. To deliver the much-promised peak speeds and enhanced coverage of 5G, big chunks of frequencies are needed. Yet spectrum has many other uses besides public mobile networks, and battles will be fierce about any reallocations of incumbent users’ rights. The broadcast industry (especially TV), satellite operators, government departments (notably defence), scientific research communities and many other constituencies are involved here. In addition, there are growing demands for more bandwidth for unlicensed usage (as used for WiFi, Bluetooth and other low-power IoT networks such as SigFox).

Multiple big industries – usually referred to by the mobile community as “verticals” – are flexing their own muscles as well. Energy, transport, Internet, manufacturing, public safety and other sectors all see the benefits of wireless connectivity – but don’t necessarily want to involve mobile operators, nor subscribe to their preferred specifications and standards. Many have huge budgets, a deep legacy of systems-building and are hiring mobile specialists.

Lastly, parts of the technology industry are advocates of more nuanced approaches to spectrum management. Rather than dedicate bands to single companies, across whole countries or regions, they would rather develop mechanisms for sharing spectrum – either on a geographic basis, or by allowing some form of “peaceful coexistence” where different users’ radios behave nicely together, instead of creating interference. In theory, this could improve the efficient use of spectrum – but adds complexity, and perhaps introduces so much extra competition than willingness to invest suffers.

Which bands are made available for 5G, on what timescales, in what type of “chunks”, and the authorisation / licensing schemes involved, all define the potential opportunity for operators in 5G – as well as the risks of disruption, and (for some) how large the window is to fully-monetise 4G investments.

The whole area is a minefield to understand – it brings together the hardest parts of wireless technology to grasp, along with impenetrable legal processes, and labyrinthine politics at national and international levels. And ideally, it is possible to somehow to layer on consideration of end-user needs, and economic/social outputs as well.

Who are the stakeholders for spectrum?

At first sight, it might seem that spectrum allocations for mobile networks ought to be a comparatively simple affair, with governments deciding on tranches of frequencies and an appropriate auction process. MNOs can bid for their desired bands, and then deploy networks (and, perhaps, gripe about the costs afterwards).

The reality is much more complex. A later section describes some of the international bureaucracy involved in defining appropriate bands, which can then be doled out by governments (assuming they don’t decide to act unilaterally). But even before that, it is important to consider which organisations want to get involved in the decision process – and their motivations, whether for 5G or other issues that are closer to their own priorities, which intersect with it.

Governments have a broad set of drivers and priorities to reconcile – technological evolution of the economy as a whole, the desire for a competitive telecoms industry, exports, auction receipts – and the protection of other spectrum user groups such as defence, transport and public safety. Different branches of government and the public administration have differing views, and there may sometimes be tussles between the executive branch and various regulators.

Much the same is true at regional levels, especially in Europe, where there are often disagreements between European Commission, European Parliament, the regulators’ groups and 28 different EU nations’ parliaments (plus another 23 non-EU nations).

Even within the telecoms industry there are differences of opinion – some operators see 5G as an urgent strategic priority, that can help differentiation and reduce costs of existing infrastructure deployments. Others are still in the process of rolling out 4G networks and want to ensure that those investments continue to have relevance. There are variations in how much credence is assigned to the projections of IoT growth – and even there, whether there needs to be breathing room for 4G cellular types such as NB-IoT, which is yet to be deployed despite its putative replacement being discussed already.

The net result is many rounds of research, debate, consultation, disagreement and (eventually) compromise. Yet in many ways, 5G is different from 3G and 4G, especially because many new sectors are directly involved in helping define the use-cases and requirements. In many ways, telecoms is now “too important to be left to the telcos”, and many other voices will therefore need to be heard.

 

  • Executive Summary
  • Introduction
  • Why does spectrum matter?
  • Who are the stakeholders for spectrum?
  • Spectrum vs. business models
  • Does 5G need spectrum harmonisation as much as 4G?
  • Spectrum authorisation types & processes
  • Licensed, unlicensed and shared spectrum
  • Why is ITU involved, and what is IMT spectrum?
  • Key bands for 5G
  • Overview
  • 5G Phase 1: just more of the same?
  • mmWave beckons – the high bands >6GHz
  • Conclusions

 

  • Figure 1 – 5G spectrum has multiple stakeholders with differing priorities
  • Figure 2 – Multi-band support has improved hugely since early 4G phones
  • Figure 3 – A potential 5G deployment & standardisation timeline
  • Figure 4 – ITU timeline for 5G spectrum harmonisation, 2014-2020
  • Figure 5 – High mmWave frequencies (e.g. 28GHz) don’t go through solid walls
  • Figure 6 – mmWave brings new technology and design challenges

Regulation: A Good Case for Change (at last)

Introduction

As one of the most regulated sectors of the economy, telecoms services are the product of a complex mix of market forces and a multitude of rules governing everything from prices to the availability of spectrum. Many of these rules date from the days when an incumbent telco, often state-owned, was the dominant player in the market and needed to be carefully scrutinised by regulators. However, some of these rules, such as those governing Net Neutrality, are relatively new and relate to telcos’ role as the gateway to the Internet, which has become so fundamental to modern life. For more on this topic, please see STL Partners’ recent report: Net Neutrality 2021: IoT, NFV and 5G ready?

As telcos’ profitability has come under increasing pressure, they are lobbying hard for greater regulatory freedom. This report outlines and analyses telcos’ various campaigns to improve the business case for infrastructure investment and level the playing field with Internet players, such as Google and Facebook. It also considers whether telcos are actually putting their money where their mouth is. Is the current regulatory and competitive climate actually prompting them to cut back on investment? What will be the impact on 5G?

For their part, governments are increasingly aware of the need to stimulate new investments and new solutions in the digital economy. Greater digitisation could help solve important socio-economic problems. For example, most governments believe that digital technologies can improve the business environment, and support lower-cost, but effective, healthcare, education and security services, that will make their economies function and grow. The EU, for example, is trying to build a Digital Single Market, while the Indian government’s Digital India initiative aims to make all public services available online.

Thus governments need telcos and tech companies to succeed. Given that telcos are typically more national than global in their outlook and organisation, they tend to seem a more natural partner for national governments than the giant Internet players, such as Google and Apple.

In light of these factors, this report explores whether policymakers’ priorities are changing and how regulatory principles and competition policy are evolving. In particular, it considers whether policymakers and regulators are now taking a tougher stance with the major Internet platforms. Finally, the report analyses several areas of uncertainty – arenas in which telcos and others are likely to concentrate their lobbying efforts in future, and gives our high level analysis of areas of potential for telcos – and regulators – to make progress.

 

  • Introducton
  • Executive Summary
  • The regulatory constraints on telcos
  • Telcos’ lobbying efforts
  • More than just talk?
  • Policymakers change their priorities
  • Taking a tougher line with Internet players
  • Conclusions and areas of uncertainty

 

  • Figure 1: EBIT margins for various segments of the digital economy
  • Figure 2: ROCE in various segments of the digital value chain
  • Figure 3: Western Europe isn’t investing enough in telecoms infrastructure
  • Figure 4: Europe’s big five have stepped up capital spending
  • Figure 5: Vodafone & Telecom Italia invest more than 20% of revenues
  • Figure 6: The capital intensity of European telcos has been rising
  • Figure 7: Europe’s large telcos are seeing ROCE fall
  • Figure 8: Europe lags behind on LTE availability
  • Figure 9: In the UK, mobile operators already share infrastructure
  • Figure 10: The EU alleges Google uses Android to unfairly promote its apps
  • Figure 11: The key issues in telecoms regulation & their relative importance
  • Figure 12: The flywheel that can be driven by ROCE-aware regulation