Login to access
Want to subscribe?
This article is part of: Enterprise Platforms, Network Innovation, Private Networks
To find out more about how to join or access this report please contact us
The transportation and logistics sector is one of the most promising industries for private LTE and 5G networks, as well as adjacent technologies such as edge computing and new Wi-Fi6E/7 versions. Although it offers opportunities for MNOs, some instances are challenging to address. Where can MNOs best meet enterprise needs?
A deep-dive into the transport and logistics sector
This report is a deep-dive into the transport and logistics vertical for private 4G/5G (P5G) cellular networks. It is intended to be both a specific examination of an important sector of opportunity for P5G and a more general example of the complexity of major industrial sectors, especially campus-based or larger-scale dedicated environments. It also covers opportunities for MNOs, and some of the public 5G angles, with additional references to alternative wireless networks such as Wi-Fi and satellite connectivity.
Often technology product and marketing executives think of industry sectors as monolithic (“finance”, “retail”, “oil and gas”, etc.), typically aligning with familiar industry classification codes. The truth is that each industry has multiple sub-sectors and varied site types, numerous applications, several user-groups, arrays of legacy systems and technology vendors, and differing attitudes and affordability of wireless solutions. This is especially true of transport and logistics, where railway stations share only limited technology or use case overlap with airports, or distribution warehouses.
The transport sector is further complicated by its overlap with the public sector – not only does it constitute an important part of countries’ critical national infrastructure, but in many cases major transport firms have a history of state ownership, or are still owned and run by governments today.
There are also numerous sector-specific regulatory angles, which often translate to conservatism about technology, and a tendency to develop custom solutions and standards. Investment cycles can be very long and sometimes politicised, with assets often expected to be in place for decades. On the positive side, the strategic importance of transport can mean that the sector receives special attention in areas such as spectrum allocations.
Enter your details below to download an extract of the report
Definition of the transport and logistics sector
There are numerous transport and logistics sub-sectors and site types covered in this report. Although there are some common features and market drivers, there are also clear differences in locations’ physical size and layout, as well as equipment and application platforms, legacy/alternative wireless technologies, regulatory oversight and technology conservatism.
Multiple sub-sectors for transport / logistics vertical
The key domains covered include:
- Transportation hubs, which refers to sites like ports, airports, stations and railyards. They vary significantly in size.
- Logistics, which relates to the centralised facilities for shipping, storage and sorting of containers and packages, such as warehouses and fulfilment / distribution centres. It also encompasses the wide-area / global transport of containers, packages and bulk products on trucks, trains and ships.
- Transport networks including rail networks, metropolitan transit and light-rail systems, and road networks.
There are also often hybrid sites, such as FedEx’s huge logistics hub sites next to Memphis and Indianapolis airports.
In addition, there is also significant overlap with various other sectors, such as major manufacturing sites. For instance, aerospace manufacture and maintenance typically occurs at combined factories/airfields such as Boeing and Airbus’ facilities. Similar combined operations occur in ship-building and train production. Mining, steel and cement companies may even have their own private rail-lines, from remote sites or industrial zones, to multi-modal transit hubs at ports or cities.
For logistics sites, it should be noted that many facility owners also have large retail networks (such as Costco and Walmart), or other sites such as Amazon’s AWS datacentres. Those ancillary operations and their specific applications are not directly included here.
For metropolitan transit, various transport-related facilities may be under the ownership or control of local government and municipal bodies. Similar overlaps between transport-related sites and government occur for military, public safety and other agencies.
Transport / logistics intersects with several adjacent verticals
Sector trends and drivers affecting private networks
This report is not the appropriate venue for a full analysis of the transport and logistics industry, which is made up of multiple sub-sectors, as discussed above.
However, the demand for private networks for these sectors is ultimately driven by a number of top-level national and global changes, in addition to certain local factors such as political support for new metro transit systems, “free ports” or enterprise zones, or efforts to modernise railway networks.
Broadly speaking, these all create a greater requirement for connectivity, control and information flows – which then translates to more 4G and 5G networks, as well as Wi-Fi, fibre and wide-area network services. There are also various new greenfield infrastructure projects, which lend themselves well to ground-up design of fit-for-purpose communications systems.
Some of the key megatrends spanning all aspects of logistics and transportation include:
- Automation and robotics: As discussed throughout this report, transport hubs and warehouses are becoming much more automated. Although mechanisation via port cranes, baggage-handling systems and automated guided vehicles is not new, the systems are being enhanced rapidly. In particular, sorting or control systems, robots and other forms of automation are using wireless video cameras for detecting packages, enabling remote-control by tele-operators and many other uses.
- Data and analytics: Transport and logistics companies are at the forefront of data-rich applications, from digital twins of jet engines and rail locomotives, to optimised scheduling and packaging of goods in fulfilment warehouses. Better-connected equipment, IoT sensors and video input can improve turnaround times, reduce shipment errors, reduce energy consumption and much more. Passenger-led transportation should face fewer delays, more dispersed crowds and improved customer service.
- Predictive maintenance and asset management: Transport systems are capital-intensive. The cost of downtime for a vehicle – or critical system in a warehouse or airport terminal – can be huge. There is a huge opportunity for using networked information and sensors to enable predictive maintenance – i.e. fixing emergent problems before they become critical, or scheduling regular maintenance when it is needed rather than just based on a generic schedule. For instance, anomalous readings from vibration and temperature sensors can give early warnings of issues. There are also obvious safety benefits in areas such as aviation and maritime fault-diagnosis.
- Improved employee safety and productivity: There is far less tolerance of industrial accidents than in the past. Using automation and better information, transportation and logistics firms are looking to increase worker productivity at the same time as improving safety. This spans many aspects, from ensuring safe distances between workers and vehicles, to rapid reaction to any incident, plus improved recordkeeping and training. Reliable communication is essential, using both voice (often push-to-talk) and an increasing need for video communications and mobile access to enterprise application.
- Climate change and decarbonisation: Over the next decade, many transport and logistics businesses will face profound change as the planet heads towards net zero carbon emissions. Ports, airports, distribution centres and other sites are likely to need new electrical sources such as wind and solar, onsite battery storage, maybe hydrogen facilities and fleets of electric (often autonomous) site vehicles and machines. Connectivity will be needed for all of this, plus energy use monitoring, control, data-collection and reporting.
- Geopolitics, re-shoring and supply-chain resilience: Recent events such as the US-China trade war, the COVID pandemic and the Russia/Ukraine war have highlighted the risks of global (and often fragile) supply chains to disruptive external events. Traffic and passenger levels at many airports fell to 20% of pre-pandemic levels or lower. While demand is now recovering in many places, other issues have emerged as well – from economic fluctuations, to fuel price inflation and staffing shortages. As well as localised production, shipping and logistics will need to be much more efficient, automated and connected in order to re-route shipments, store inventory and deal with new paperwork and compliance requirements.
- Cybersecurity: Transport hubs and warehouses are part of national critical infrastructure. The rise of automation and cloud-based functions poses security challenges as well as gains from efficiency. Old IT, network and operational systems will be strengthened or retired if they have vulnerabilities, while networks will need extra resilience and redundancy. Wireless networks may be used as backups in case of failure of fibre or other links.
- New business models and vertical integration: Many transport companies are looking to extend their reach into adjacent industries, or via vertical integration within their own domain. Companies such as FedEx and UPS, as well as eCommerce players such as Amazon, have their own fleets of planes and on- or near-airport warehouse facilities. Rail companies are exploring new mixed use retail and office properties integrated with stations. Some are deploying dedicated energy infrastructure, ranging from solar farms to hydrogen electrolysis. All these facilities may be built as greenfield developments, with the project considering the latest connectivity options for IoT or other uses.
- Enhanced customer / passenger experience: Both individual travellers and freight shippers have an expanded set of choices for travel and transport of goods. They make decisions not just on price, but also reliability / predictability, as well as up-to-date information about status and disruptions. There are expectations for easy Internet access, online portals for reservation and check-in, use of digital sign-boards onsite, accurate cargo tracking and condition-monitoring, simpler border and customs processes, and safe/secure travel environments. They also expect multi-modal transport to be made easier, with interchanges made more convenient and transparent for both goods and personal travel.
Transport / logistics megatrends and implications for connectivity
Source: STL Partners
Table of content
- Executive Summary
- Overview
- Recommendations for traditional mobile operators
- Recommendations for transportation operators
- Recommendations for logistics companies
- Recommendations for regulators and policymakers
- Recommendations for vendors
- Introduction
- Definition of the transport and logistics sector
- Sector trends and drivers affecting private networks
- Use cases for 4G/5G in transport and logistics
- Scale of transport sites and private networks
- General use cases for private 5G in transport / logistics
- Sector-specific issues and use cases for private networks
- Building and running transport private networks
- Supply-side evolution
- Private vs. public cellular networks in transport
- New service provider classes and delivery models
- The vendor landscape
- Regulatory and policymaking considerations
- Wi-Fi, satellite and other wireless technologies
- Conclusions and recommendations
- Conclusion and long-term futures
- Takeouts for traditional MNOs and telcos