Airports: The roles of 5G & private networks

A deep dive into private networks for the aviation vertical

This report is intended to be both a specific examination of an important sector of opportunity for Private 5G (P5G) and an example of the complexity of major industrial sectors and campus-based environments. It also covers opportunities for MNOs.

Airports have been among the earliest sites for private cellular and remain a major focus for vendors and service providers, as solutions mature and spectrum options proliferate. They already generate huge investments into public cellular (indoor and outdoor) as well as being headline sites for Wi-Fi deployment and use. They also employ dozens of other wireless technologies, from radar to critical voice communications.

In the case of airports, the largest are so large and diverse that they actually resemble cities, with “private” networks serving an environment actually quite similar to a small national operator or regional MNO. For example, Dallas Fort-Worth airport spans 27 square miles – larger than the island of Manhattan or the principality of San Marino. They may have 100s of companies as tenants, and 10000s of employees – as well as passengers, vehicles and IoT devices. This may mean that they end up with multiple private wireless networks in different parts of the airfield – from the passenger terminal to maintenance hangars to hotels, to the car-rental facility.

They are also intensive Coordination Age ecosystems. Their effective operation involves the safe and secure management of millions of physical and digital assets across multiple parties, billions of dollars, and many lives.

Often technology product and marketing executives think of industry sectors as monolithic (“finance”, “retail”, “oil and gas” etc), typically aligning with familiar industry classification codes. The truth is that each industry has multiple sub-sectors and varied site types, numerous applications, several user-groups, arrays of legacy systems and technology vendors, and differing attitudes and affordability of wireless solutions.

STL Partners hopes that this exercise examining airports will prompt suppliers and operators to drill into other vertical sectors in similar depth. Depending on the response to this type of document, we may well write up other areas in similar fashion in future. (We are also available for private analysis projects).

Enter your details below to request an extract of the report


 

Sector trends and drivers affecting private 5G networks

This report is not the appropriate venue for a full analysis of the aviation and airport industry. However, a number of top-level trends are important to understand, as there is a fairly direct link to the deployment of cellular technologies and private 4G/5G.

Trends for airlines

Before the pandemic, there was a sustained growth in worldwide air-passenger traffic, fuelled by the growth of Chinese and Indian middle-classes, as well as inter-regional and long-haul flights in and between Europe, Asia, the Americas and the Middle East. Forecasts were continued for growth, with air-freight also increasing alongside passenger numbers.

This growth resulted in numerous impacts on aviation more broadly:

  • Construction of many entirely new airports, along with extra terminals and refurbishments at established sites. Examples have included immense new airports at Beijing, Doha and Istanbul. These developments typically include huge focus on efficiency, IoT and safety – all heavily reliant on connectivity.
  • Low-cost and “basic” airlines such as Southwest, EasyJet, AirAsia and others have grown rapidly (at least pre-pandemic). Some have built dedicated terminals. Many have a huge focus on fast “turns” of aircraft between arrival and departure. This needs enhanced coordination and communications between multiple ground-service providers to manage 50+ tasks, from baggage unloading to cleaning and refuelling.
  • Established airlines focusing on greater efficiency, novel route choices, new hub airports, better customer satisfaction via information and interactivity throughout their journeys, as well as pushing ancillary services such as contract maintenance. Again, connectivity plays a variety of roles, from hangars to in-flight wireless.
  • Major warehousing and logistics centres built at airports for companies such as Fedex and UPS, as well as eCommerce players such as Amazon starting to build fleets of planes and on- or near-airport facilities. These typically feature high levels of automation and wide use of robotics.
Long-term air passenger growth (pre-pandemic)

Long-term air passenger growth (pre-pandemic)

Airports as “hubs” for multiple businesses

Many airports now operate on-site business centres, hotels, large retail facilities – as well as growing sophistication of air-freight, contract maintenance services and aircraft refits. Each is often a business in its own right, with separate buildings – but must also coordinate with the central airport authority in terms of security, traffic, signage and vehicle movements.

As well as their own internal connectivity requirements for employees and a growing range of IoT systems, the site-owners are also responsible for wired and wireless links for stakeholders such as:

  • Transportation companies
    • Airlines, both within the terminals and at hangars / warehouses and nearby offices.
    • Shipping agents and freight forwarders
    • Logistics and package-delivery firms
  • Services providers
    • National mobile network operators
    • Retailers and other concessions
    • Vehicle rental agencies
    • Bus, rail, taxi & tour companies
    • Caterers
    • Fuel companies
    • Security firms
    • On-site hotels, warehouses and business parks
    • Insurance and finance organisations
  • Operations and public safety
    • Police and firefighters
    • Medical services
    • Air / port traffic control
    • Power and lighting providers
    • Construction contractors

Many of these groups could potentially justify their own investments in private cellular networks (as well as indoor coverage and Wi-Fi if they have dedicated buildings). An open question is whether airport authorities will try to deploy fully campus-wide networks, or whether a diverse array of separate infrastructures will emerge organically.

Industry transformation, automation and IoT-led innovation

As well as the airlines, the airport authorities have become ever-more focused on technology of the site overall. They are aware of operational efficiency, security and safety – and increasing the potential to earn extra revenues from passengers. A very broad array of existing and new use-cases are leaning on improved connectivity, such as:

  • In-building coverage (and huge capacity) for passengers and workers, all of whom expect both multi-network cellular and ubiquitous Wi-Fi availability
  • Prolific use of digital sign-boards for passengers, staff, plane/ship crews etc
  • Freight-tracking, including details about pallets and containers
  • Security cameras and sensors
  • Smart lighting for runways, loading areas and local roadways
  • Support of complex and mission-critical baggage-handling systems
  • Border and customs functions, including automated passport scanners with video analytics
  • “Smart building” technology ensuring optimal use of ventilation, heating, lighting and safety sensors
  • Robotic and remote-controlled vehicles, such as tugs or drones
  • Voice communications systems, now evolving from 2-way radios to cellular-based systems
  • Maintenance systems for aircraft in hangars – increasingly with high-definition video inspections, augmented reality for engineers, and strict requirements on documentation and record-keeping.

Security and safety concerns

Airports have always had to contend with security issues, from immigration to fire-safety, anti-terrorism, theft and smuggling operations. This has required continued evolution of screening systems, cameras, staff access control and multiple layers of analytics software.

This translates to private cellular in a number of ways:

  • Desire to update legacy critical communications systems (e.g. TETRA radios) to more-capable LTE or 5G equivalents, to enable data, video and other applications.
  • Requirement for networks with a bias towards data uplink rather than downlink, especially for HD video and other security  This may mean a preference for separate frequencies to the public networks, in order to accommodate a different mix of up/down traffic.
  • Involvement of a wide range of systems integrators and critical communications specialists with a long history of deploying reliable wireless  Many are adopting 4G and 5G skill-sets internally.
  • Requirement for 100% coverage of the airport environment, both indoors and outdoors as far as the perimeter fence. This may be outside the coverage of many public networks, especially for higher-frequency 5G

Complex wireless environment

It is important to recognise that airfields have a huge array of different technology systems, many of which depend on radio communications or other electromagnetic use-cases. Some of these – such as radars – can occupy frequency bands quite close to those used for 4G or 5G mobile. There are also assorted niche applications, for air traffic control, critical communications among ground workers and emergency services, satellite connectivity for aircraft, scientific instruments for weather forecasting and many others. Wi-Fi is used intensively, both inside the terminal and across some outdoor areas. Some airports have sections used by the military as well as civil aviation, with yet another group of radio types and frequencies employed.

This has several implications:

  • Unlike many other sites, cellular communications is not the most important use of spectrum  Mobile networks – whether public or private – need to fit alongside a huge variety of other services and functions.
  • Some frequency bands that are offered by regulators on a local basis for private 4G/5G may not be available for licensing at airports, as there may be important incumbent users.
  • Airports take increasing interest in overall spectrum management tools, as well as site surveys and the ability to intervene rapidly in case of problems.
  • The aviation industry has a large number of wireless and RF specialists, some of whom are likely to be cross-trained in cellular  This makes it more capable than many sectors to adopt private networks rather than always relying on public MNO service.

Covid-19 Pandemic

Since early 2020, the aviation and airline sector has been decimated by travel restrictions imposed because of the pandemic. Traffic and passenger levels at many airports fell to 20% of pre-pandemic levels or lower. However, as vaccination programs enable the re-opening of travel, growth is starting to occur again.

Various after-effects of the pandemic will increase the need for automation, connectivity and communications. There are new security-checks on vaccination and testing status, more cameras for fever-detection and mask-compliance, automated sanitising of surfaces and much more. Many airports have needed to reconfigure the layouts of their terminals to accommodate testing centres, facilitate social distancing, or sometimes close areas in order to reduce costs. This puts a premium on wireless connectivity that can be adapt to new circumstances rapidly.

Another impact of the last 2 years has been growth in the importance of cargo shipments, from both dedicated freight terminals and in commercial airliners. This has led to new warehouse facilities being constructed, as well as different types of asset tracking and loading vehicles being employed. Again, this has driven the need for better connectivity.

Table of content

  • Executive Summary
    • Overview
    • Recommendations for Airport Operators & Airlines
    • Recommendations for Mobile Operators
    • Recommendations for Regulators & Policymakers
    • Recommendations for Vendors
  • Introduction
    • Sector trends and drivers affecting private networks
  • Evolving airport use-cases for 4G/5G
    • Understanding airports’ layout
    • Background: Public cellular at airports
    • From public to private connectivity: growth in B2B wireless
    • Specific use-cases for private 4G / 5G at airports
  • Airports – a subset of “campus” networks
    • Characteristics of campus networks
    • Adjacent trends
    • Campus networks: who is responsible?
  • Building & operating airport private networks
    • Supply-side evolution for airport networks
    • Airport stakeholders
    • Monetisation opportunities
    • Airport private network case studies
    • Can public 5G network slicing work instead of private 5G?
    • Where does Wi-Fi & other wireless technology fit?

Enter your details below to request an extract of the report


 

Private networks: Lessons so far and what next

The private networks market is rapidly developing

Businesses across a range of sectors are exploring the benefits of private networks in supporting their connected operations. However, there are considerable variations between national markets, reflecting spectrum and other regulatory actions, as well as industrial structure and other local factors. US, Germany, UK, Japan and the Nordics are among the leading markets.

Enterprises’ adoption of digitalisation and automation programmes is growing across various industries. The demand from enterprises stems from their need for customised networks to meet their vertical-specific connectivity requirements – as well as more basic considerations of coverage and cost of public networks, or alternative wireless technologies.

On the supply side, the development in cellular standards, including the virtualisation of the RAN and core elements, the availability of edge computing, and cloud management solutions, as well as the changing spectrum regulations are making private networks more accessible for enterprises. That said, many recently deployed private cellular networks still use “traditional” integrated small cells, or major vendors’ bundled solutions – especially in conservative sectors such as utilities and public safety.

Many new players are entering the market through different vertical and horizontal approaches and either competing or collaborating with traditional telcos. Traditional telcos, new telcos (mainly building private networks or offering network services), and other stakeholders are all exploring strategies to engage with the market and assessing the opportunities across the value chain as private network adoption increases.

Following up on our 2019 report Private and vertical cellular networks: Threats and opportunities, we explore the recent developments in the private network market, regulatory activities and policy around local and shared spectrum, and the different deployment approaches and business cases. In this report we address several interdependent elements of the private networks landscape

Enter your details below to request an extract of the report


 

What is a private network?

A private network leverages dedicated resources such as infrastructure and spectrum to provide precise coverage and capacity to specific devices and user groups. The network can be as small as a single radio cell covering a single campus or a location such as a manufacturing site (or even a single airplane), or it can span across a wider geographical area such as a nationwide railway network or regional utility grids.

Private networks is an umbrella term that can includes different LAN (or WAN) connectivity options such as Wi-Fi and LPWAN. However, more commonly, the term is being associated with private cellular networks based on 3GPP mobile technologies, i.e. LTE or 5G New Radio (NR).

Private networks are also different from in-building densification solutions like small cells and DAS which extend the coverage of public network or strengthen its capacity indoors or in highly dense locations. These solutions are still part of the public network and do not support customised control over the local network access or other characteristics. In future, some may support local private networks as well as public MNOs’ services.

Besides dedicated coverage and capacity, private networks can be customised in other aspects such as security, latency and integration with the enterprise internal systems to meet business specific requirements in ways that best effort public networks cannot.

Unlike public networks, private networks are not available to the public through commercially available devices and SIM cards. The network owner or operator controls the authorisation and the access to the network for permissioned devices and users. These definitions blur somewhat if the network is run by a “community” such as a municipality.

Typically, devices will not work outside the boundaries of their private network. That is a requirement in many use cases, such as manufacturing, where devices are not expected to continue functioning outside the premise. However, in a few areas, such as logistics, solutions can include the use of dual-SIM devices for both public and private networks or the use of other wide area technologies such as TETRA for voice. Moreover, agreements with public networks to enable roaming can be activated to support certain service continuity outside the private network boundaries.

While the technology and market are still developing, several terms are being used interchangeably to describe 3GPP private networks such dedicated networks, standalone networks, campus networks, local networks, vertical mobile network and non-public networks (NPN) as defined by the 3GPP.

The emergence of new telcos

Many telcos are not ready to support private networks demands from enterprises on large scale because they lack sufficient resources and expertise. Also, some enterprises might be reluctant to work with telcos for different reasons including their concerns over the traditional telcos’ abilities in vertical markets and a desire to control costs. This gap is already catalysing the emergence of new types of mobile network service providers, as opposed to traditional MNOs that operate national or regional public mobile networks.

These players essentially carry out the same roles as traditional MNOs in configuring the network, provisioning the service, and maintaining the private network infrastructure. Some of them may also have access to spectrum and buy network equipment and technologies directly from network equipment vendors. In addition to “new telcos” or “new operators”, other terms have been used to describe these players such as specialist operators and alternative operators. Throughout this report, we will use new telcos or specialist operators when describing these players collectively and traditional/public operators when referring to typical wide area national mobile network provider. New players can be divided into the following categories:

Possible private networks service providers

private networks ecosystem

Source: STL Partners

Table of content

  • Executive Summary
    • What next
    • Trends and recommendations for telcos, vendors, enterprises and policymakers
  • Introduction
  • Types of private network operators
    • What is a private network?
    • The emergence of new telcos
  • How various stakeholders are approaching the market
    • Technology development: Choosing between LTE and 5G
    • Private network technology vendors
    • Regional overview
    • Vertical overview
    • Mergers and acquisitions activities
  • The development of spectrum regulations
    • Unlicensed spectrum for LTE and 5G is an attractive option, but it remains limited
    • The rise of local spectrum licensing threatens some telcos
    • …but there is no one-size fits all in local spectrum licensing
    • How local spectrum licensing shapes the market and enterprise adoption
    • Recommendations for different stakeholders
  • Assessing the approaches to network implementation
    • Private network deployment models
    • Business models and roles for telcos
  • Conclusion and recommendations
  • Index
  • Appendix 1:  Examples of private networks deployments in 2020 – 2021

Enter your details below to request an extract of the report


 

Fixed wireless access growth: To 20% homes by 2025

=======================================================================================

Download the additional file on the left for the PPT chart pack accompanying this report

=======================================================================================

Fixed wireless access growth forecast

Fixed Wireless Access (FWA) networks use a wireless “last mile” link for the final connection of a broadband service to homes and businesses, rather than a copper, fibre or coaxial cable into the building. Provided mostly by WISPs (Wireless Internet Service Providers) or mobile network operators (MNOs), these services come in a wide range of speeds, prices and technology architectures.

Some FWA services are just a short “drop” from a nearby pole or fibre-fed hub, while others can work over distances of several kilometres or more in rural and remote areas, sometimes with base station sites backhauled by additional wireless links. WISPs can either be independent specialists, or traditional fixed/cable operators extending reach into areas they cannot economically cover with wired broadband.

There is a fair amount of definitional vagueness about FWA. The most expansive definitions include cheap mobile hotspots (“Mi-Fi” devices) used in homes, or various types of enterprise IoT gateway, both of which could easily be classified in other market segments. Most service providers don’t give separate breakouts of deployments, while regulators and other industry bodies report patchy and largely inconsistent data.

Our view is that FWA is firstly about providing permanent broadband access to a specific location or premises. Primarily, this is for residential wireless access to the Internet and sometimes typical telco-provided services such as IPTV and voice telephony. In a business context, there may be a mix of wireless Internet access and connectivity to corporate networks such as VPNs, again provided to a specific location or building.

A subset of FWA relates to M2M usage, for instance private networks run by utility companies for controlling grid assets in the field. These are typically not Internet-connected at all, and so don’t fit most observers’ general definition of “broadband access”.

Usually, FWA will be marketed as a specific service and package by some sort of network provider, usually including the terminal equipment (“CPE” – customer premise equipment), rather than allowing the user to “bring their own” device. That said, lower-end (especially 4G) offers may be SIM-only deals intended to be used with generic (and unmanaged) portable hotspots.
There are some examples of private network FWA, such as a large caravan or trailer park with wireless access provided from a central point, and perhaps in future municipal or enterprise cellular networks giving fixed access to particular tenant structures on-site – for instance to hangars at an airport.

Enter your details below to request an extract of the report


FWA today

Today, fixed-wireless access (FWA) is used for perhaps 8-9% of broadband connections globally, although this varies significantly by definition, country and region. There are various use cases (see below), but generally FWA is deployed in areas without good fixed broadband options, or by mobile-only operators trying to add an additional fixed revenue stream, where they have spare capacity.

Fixed wireless internet access fits specific sectors and uses, rather than the overall market

FWA Use Cases

Source: STL Partners

FWA has traditionally been used in sparsely populated rural areas, where the economics of fixed broadband are untenable, especially in developing markets without existing fibre transport to towns and villages, or even copper in residential areas. Such networks have typically used unlicensed frequency bands, as there is limited interference – and little financial justification for expensive spectrum purchases. In most cases, such deployments use proprietary variants of Wi-Fi, or its ill-fated 2010-era sibling WiMAX.

Increasingly however, FWA is being used in more urban settings, and in more developed market scenarios – for example during the phase-out of older xDSL broadband, or in places with limited or no competition between fixed-network providers. Some cellular networks primarily intended for mobile broadband (MBB) have been used for fixed usage as well, especially if spare capacity has been available. 4G has already catalysed rapid growth of FWA in numerous markets, such as South Africa, Japan, Sri Lanka, Italy and the Philippines – and 5G is likely to make a further big difference in coming years. These mostly rely on licensed spectrum, typically the national bands owned by major MNOs. In some cases, specific bands are used for FWA use, rather than sharing with normal mobile broadband. This allows appropriate “dimensioning” of network elements, and clearer cost-accounting for management.

Historically, most FWA has required an external antenna and professional installation on each individual house, although it also gets deployed for multi-dwelling units (MDUs, i.e. apartment blocks) as well as some non-residential premises like shops and schools. More recently, self-installed indoor CPE with varying levels of price and sophistication has helped broaden the market, enabling customers to get terminals at retail stores or delivered direct to their home for immediate use.

Looking forward, the arrival of 5G mass-market equipment and larger swathes of mmWave and new mid-band spectrum – both licensed and unlicensed – is changing the landscape again, with the potential for fibre-rivalling speeds, sometimes at gigabit-grade.

Enter your details below to request an extract of the report


Table of contents

  • Executive Summary
  • Introduction
    • FWA today
    • Universal broadband as a goal
    • What’s changed in recent years?
    • What’s changed because of the pandemic?
  • The FWA market and use cases
    • Niche or mainstream? National or local?
    • Targeting key applications / user groups
  • FWA technology evolution
    • A broad array of options
    • Wi-Fi, WiMAX and close relatives
    • Using a mobile-primary network for FWA
    • 4G and 5G for WISPs
    • Other FWA options
    • Customer premise equipment: indoor or outdoor?
    • Spectrum implications and options
  • The new FWA value chain
    • Can MNOs use FWA to enter the fixed broadband market?
    • Reinventing the WISPs
    • Other value chain participants
    • Is satellite a rival waiting in the wings?
  • Commercial models and packages
    • Typical pricing and packages
    • Example FWA operators and plans
  • STL’s FWA market forecasts
    • Quantitative market sizing and forecast
    • High level market forecast
  • Conclusions
    • What will 5G deliver – and when and where?
  • Index

What will make or break 5G growth?

5G is a long way from delivering on the hype

This report is a crib sheet outlining the 18 factors that STL Partners believes will have a significant impact on the development of the 5G market. We put forward our core assumption on how we expect each factor to affect the 5G market, and highlight the upside and downside risks to our assumption.

The purpose of the report is to pull together knowledge from across different areas – networks, enterprise services, consumer services, regulatory and commercial environments – to give a holistic view of what we think will influence 5G development. Although everyone in the industry has an eye on how 5G is developing, often this is from a relatively narrow view of the market. But the reality is that over the long term, 5G will not be just another G, but an amalgamation of many emerging and maturing network technologies, increasingly bespoke and fragmented enterprise and consumer demands, with high government expectations for contributions to economic growth. So to understand how quickly or slowly 5G will deliver on these promises, operators, vendors, customers and governments need to consider how a wide range of factors are playing out in their countries. By benchmarking their progress against our core assumptions, upside risks and downside risks, industry players can make a well-rounded assessment of whether they are ahead or behind in 5G development and identify ways to drive the market forward.

This report builds on STL’s extensive coverage of 5G and other enabling technologies:

Key factors influencing 5G development

We have organised the factors affecting 5G development into three categories:

  1. Primary drivers: We believe these will have the greatest impact on 5G development, owing to their influence over the cost and ease of deploying network infrastructure and services, and accessibility and value of 5G connectivity to end-users.
  2. Secondary drivers: These factors have a less direct impact on the 5G market development, especially over the short term, or will only influence a specific part of the market, such as fixed wireless access. However, in some instances telcos have more control over secondary factors than the primary ones, so depending on their strategies, secondary factors could have a disproportionate impact on 5G market development.
  3. Wildcards: These are factors which are less likely or predictable, but that if they do occur would have a decisive impact on how the 5G market (and wider telecoms industry) evolves.

Request a report extract

The 5G-aliser

Over the coming quarters, we will use these 5G factors as a means of measuring progress. The diagram below shows the inaugural 5G-aliser. The top row shows the supply and demand levels for 5G, the middle row shows the absolute level impact of each driver on 5G development, i.e. how important each driver is to 5G growth right now , and the bottom row shows the relative position of each driver. While our intention was to start all drivers at the same relative level, reflecting our core assumption as of March 2020, given the rapid escalation of the COVID-19 pandemic, we have dropped this driver into the red already as we expect telcos’ first priority during the crisis to be on keeping their current operations running smoothly.

The 5G-aliser, March 2020

STL 5G-a-liser March 2020

Source: STL Partners

On a quarterly basis we will monitor the development of the 5G market and update the markers for each driver to reflect the emergence of upside or downside risks, and rising or falling importance of different growth drivers. Evidently, some factors are dependent on local market conditions, so we will also evaluate the drivers on a market by market basis, when important local developments occur.

Table of contents

  • Executive Summary
    • Key takeaways
    • The 5G-aliser
  • Introduction
  • Key factors influencing 5G development
    • Primary drivers
    • Secondary factors
    • Wildcards
  • Conclusions

5G network slicing: How to secure the opportunity

Network slicing is central to unlocking the 5G opportunity

There has understandably been a lot of talk and hype about 5G and network slicing in the telecoms industry. It promises to bring greater speeds, lower latency, greater capacity, ultra-reliability, greater flexibility in the network operations and more. It also pledges to support high device densities and to enable new services, new business and operational models as well as new vertical opportunities.

Given that the rollout of 5G networks is expected to involve a significant investment of hundreds of billions of dollars, there is a need to look at how it might address new business opportunities that previous generations of cellular networks could not. Many, including us, have argued that the consumer business case for 5G is limited, and that the enterprise segment is likely to represent the greater opportunity.

One highly anticipated aspect of 5G is that it will be built on virtualised infrastructure. Network functions will run as software in datacentres, rather than on dedicated appliances as in the past. This will mean that operators can deploy and make changes to functions with far greater flexibility than ever before. It also offers the promise of enabling multiple logical end-to-end networks – each intended to meet specific needs – to be “spun-up”, operated and retired as required, over the same shared hardware. Traditionally, achieving such a multi-service outcome would have required building dedicated stand-alone networks, which was rarely a viable proposition.  This capability is the essence of network slicing.

Figure 1: Diagram of network slicing

5G network slicing diagram

Source: STL Partners

This report will explore the concept of network slicing and what it means for enterprise customers. It will have a particular focus on one aspect of network slicing through the enterprise perspective, that being security. The first section will cover how we define network slicing whilst the second will dive into what the enterprise security-related concerns are. We will then assess the implications of these concerns in the third section, before identifying ways that telcos can address these concerns in order to accelerate the adoption of network slicing.

Our findings in this report are informed by a wider STL Partners research programme that STL Partners has conducted with telcos and enterprises across several verticals, including transport, defence, utilities, logistics and smart cities.

Enterprise security concerns with network slicing are rooted in the fear of the new and unknown

Network slicing is inherently complex. Multiple networks being created over common infrastructure, each serving different customers, use cases and devices means that management and orchestration of network slices is something that telcos are still grappling with. It not only represents a change in technology but also a shift in the way that the network lifecycle is managed, which is new and unfamiliar to telcos and their enterprise customers. Current security protocols will not necessarily be equipped to cover many of the new dimensions that network slicing brings. This new shift in the way things work will result in various enterprise security concerns. Changes in the network architecture with slicing, with multiple logical networks each having their own resources and sharing others, also poses questions of how the security architecture needs to evolve in order to address new risks.

Enterprise customers define security as not only about preventing services being compromised by intentional malicious attacks, but also about preventing service degradation or disruption due to unintentional operational or technical failures and/or negligence, unplanned breakdowns etc. Due to the interdependence of slices, even if a fault occurrence happens, it could consume resources in one slice, just like an attack would, which would affect the reliability or lifecycle of other network slices that share the same resources. Regardless of how the performance of a slice gets affected, whether it is by a malicious attack, a natural disaster, a bug or unintentional negligence, the consequences are ultimately the same. These are all, in some way, related to security. Therefore, when considering security, we need to think beyond potential intentional malicious attack but also unintentional negligence and unplanned events.

What if my network slice gets compromised? What if another slice gets compromised? What if another slice is eating up resources?

We outline these three key questions that enterprises have around their security concerns, as potential tenants of network slices, in the body of the report.

Table of contents

  • Executive summary
  • Introduction
    • Network slicing is central to unlocking the 5G opportunity
    • Dynamic, virtualised, end-to-end networks on shared resource
    • Slicing might come about in different ways
    • Slicing should bring great benefits…
  • Enterprise security concerns with network slicing are rooted in the fear of the new and unknown
    • What if my network slice gets compromised?
    • What if another network slice is compromised?
    • What if another network slice is eating up resources?
  • Security concerns will slow adoption if not addressed early and transparently
    • Concerns and misconceptions can be addressed through better awareness and understanding
    • As a result, enterprises project concerns about public networks’ limitations onto slicing
    • The way that network slicing is designed actually enhances security, and there are additional measures available on top.
  • Telcos must act early and work more closely with customers to drive slicing adoption
    • Ensure that the technology works and that it is secure and robust
    • Organise and align internally on what network slicing is and where it fits internally before addressing enterprise customers
    • Engage in an open dialogue with enterprise customers and directly address any concerns via a ‘hand holding’ approach
    • Don’t wait for maturity to start testing and rolling out pilots to support the transition and learning process
  • Conclusion

Private and vertical cellular networks: Threats and opportunities

For the report chart pack download the additional file on the left

5G is catalysing demand for customisation

The arrival of 5G has catalysed a huge amount of interest in enterprise, government and “vertical” use-cases for cellular networks. Cellular technology is becoming ever more important and applicable for businesses, for diverse use-cases from factory automation, to better hospitality guest-services, to replacement of legacy two-way radios.

Some of this fits in with STL’s view of the Coordination Age, and the shift towards connectivity becoming part of wider, society-level or economy-level applications and solutions. However, in many ways it is more of an evolution of traditional enterprise use of private wireless solutions, but updated with newer and more-performant 5G radios. The future battleground is whether such coordination requires external services (and thus SPs), or whether the capabilities are best-delivered in-house on private networks.

For various reasons of cost, performance, accountability or guaranteed coverage, there is a drive towards greater customisation and control, often beyond that currently deliverable by traditional MNOs.

However, there is significant confusion between three things:

  • Mobile network services and applications sold to, or used by, industrial and enterprise customers
  • Mobile networks optimised, extended or virtualised for industrial and enterprise requirements
  • Mobile networks built exclusively for, or owned by, industrial companies and other enterprises

This report is a joint exercise between STL Partners and affiliate Disruptive Analysis, which has covered this sector in depth for almost 20 years. Its founder Dean Bubley runs workshops on private cellular and neutral-host networks, as well as undertaking private projects and speaking engagements advising operators, vendors, regulators and investors on business models, spectrum policy and market dynamics.

What is a private mobile network?

This report primarily focuses on the third category – private mobile networks – although there is some overlap with the second, especially when techniques like network-slicing enter the discussion. There are different models of “private” too – from completely standalone networks that are entirely isolated from public mobile networks, to ones which use some dedicated infrastructure / management, alongside shared radio- or core-network elements provided by an MNO. They can be nationwide networks (for example, for utility grids), or highly localised, such as to a factory or hotel.

There are also various hybrids and nuances of all of this, such as private networks where certain functions are installed by, outsourced to, or managed by, telcos. It may be possible for users or devices to roam between private and public networks, for instance when a truck leaves a logistics facility with a local private network, and switches to the telco while it’s on the road.

Various government bodies – ranging from police forces to local council authorities – are also interested in creating private or shared 4G / 5G networks. Over the next 3-4 years, we can expect a wide diversity of approaches, and some very vague and fluid definitions from the industry.

Three building blocks for private networks

There are three main enablers (and numerous secondary drivers) behind the private network concept:

  • Availability of spectrum
  • Small cells and distributed radios
  • The move from 4G to 5G

A critical element in this is access to suitable spectrum for creating private networks. In recent years, many governments and regulatory authorities have started to make localised mobile licences available, suitable for covering enterprise sites, or wider areas such as cities. While private Wi-Fi and other networks have long been created with (free) unlicensed spectrum, this does not give the protections against contention and interference that more formal licensing enables. Other localised spectrum licenses have been given for point-to-point fixed links, temporary outside broadcast & events, or other purposes – but not cellular networks for normal mobile users. There are also discussions ongoing about making more national or wide-area spectrum available, suitable for mobile use in certain specialised verticals such as utilities.

Small cells and other types of enterprise-grade radio network (RAN) equipment are critical building- blocks for private mobile infrastructure, particularly indoors or on small/medium campus sites. They need to be low-cost, easy to install and operate, and ideally integrated with other IT and networking systems. While small cells have been around for 20 years or more, they have often been hard to deploy and manage. We are also seeing further innovation around distributed/cloud RAN which further increases the options for campus and in-building coverage systems.

5G – or more accurately the 5G era – changes the game in a number of ways. Firstly, IoT use-cases are becoming far more important, especially as analogue equipment and business processes become more connected and intelligent. Secondly, 5G brings new technical challenges, especially around the use of higher-frequency spectrum that struggles to go through walls – which highlights the paradox of telcos providing public network services on private property. Finally, with the advent of cloud-based and virtualised functions such as core networks, it is becoming easier to deploy and operate smaller infrastructures.

Some of the specialised skills requirements for building/running cellular networks can be reduced with automation, although this is still a significant obstacle for enterprises. This will drive significant demand for new tiers and types of managed services provider for private cellular – some of which will be satisfied by telcos, but which will also targeted by many others from towerco’s to systems integrators to cloud/Internet players.

It is worth stressing that this concept is not new. Private cellular networks have existed in small niches for 10-20 years. Railways have a dedicated version of 2G called GSM-R. Military squads and disaster- response teams can carry small localised base stations and controllers in their vehicles or even backpacks. Remote mines or oil-exploration sites have private wireless networks of various types. The author of this report first saw cellular small-cells in 2000, and worked on projects around enterprise adoption of private 2G as early as 2005.

Private and vertical cellular networks: Threats and opportunities aims to clarify the concept of “private” networks. It explores the domain of business-focused cellular networks, where the enterprise has some degree of ownership or control over the infrastructure – and, sometimes, the radio network itself. The report then sets out the motivations and use cases for private networks, as well as the challenges and obstacles faced.

This report is a joint exercise between STL Partners and affiliate Disruptive Analysis, which has covered this sector in depth for almost 20 years. Its founder Dean Bubley runs workshops on private cellular and neutral-host networks, as well as undertaking private projects and speaking engagements advising operators, vendors, regulators and investors on business models, spectrum policy and market dynamics. Please see deanbubley.com or @disruptivedean on Twitter for details and inquiries.

Table of contents

  • Executive Summary
  • Introduction
    • Public vs. non-public networks
    • Private network vs. private MVNO vs. slices
  • Motivations & use-cases for private networks
    • Business drivers for private cellular
    • Technical use-cases for private cellular
    • Industrial sites & IIoT
    • Enterprise/public in-building coverage
    • Neutral host networks (NHN)
    • Fixed 4G / 5G networks
  • Regulatory & spectrum issues
    • Other regulatory considerations
  • Building private networks – technology
    • Architectural choices, technology standards & industry bodies
  • The emerging private networks value chain
  • Conclusions & Recommendations
    • How large is the private network opportunity?
    • Challenges and obstacles for private networks
    • What is the implication for traditional telcos and MNOs?
    • Telcos’ relationship to project scope

5G: ‘Just another G’ – yet a catalyst of change

If you don’t subscribe to our research yet, you can download an extract of the report for free as part of our sample report series.

5G: Cutting through the hype

This briefing document is being published in June 2018. This report does not re-hash the familiar background story to 5G – the original specifications, the much-ballyhooed early thoughts on use cases, nor the breathless rhetoric about how it is going to change the world (or in the risible words of one hyperbolic tech CEO, “be more important than electricity”). Neither is it a hatchet job decrying the whole exercise as worthless. Instead, it looks at the factors acting as brakes and accelerants for 5G, and how they may affect the overall ecosystem’s evolution.

What is needed, however, is a way to cut through the spin – especially where it is aimed at policymakers and investors, who often latch on to simple but unrealistic stories. Some of the most absurd ‘5G-wash’ hyperbole emanates from Brussels and Washington DC, and in the run up to the next World Radio Congress in 2019 (where spectrum allocations are debated) it is critical that rationality and critical thought prevails over glossy lobbying. It is harmful to us all if 5G hype means it ends up overshadowing worthy parallel developments in satellite communications, private wireless and other technologies that also deserve attention, spectrum or subsidised research projects.

It is understandable that many in the industry ‘talk up their own book’, especially given consolidation and profitability concerns in the vendor space. The 2018 market for telecoms infrastructure is expected to decline, and there are huge hopes at Ericsson, Nokia and Huawei that 5G can help turn it around in 2019–20. But that is not an adequate excuse to exaggerate. Neither is it an excuse to mislabel and market diverse other technologies (advanced versions of 4G, Wi-Fi and so on) as ‘5G’ – although such egregious duplicity is one of the few certainties here. It is probably enhancements and capacity additions for 4G that will prove the biggest moneyspinners over the next 12–24 months.

The next 24 months for 5G

In theory, the next 24 months should be when it all happens for 5G. Early demonstrations and trials have been well publicised, including various global cities’ testbeds and the South Korean Winter Olympics in Pyeongchang. Almost every week yields new press releases, lauding everything from medical diagnosis (NTT DoCoMo) to self-driving snowploughs (Telenor). It is unclear how much any of these shiny announcements actually accelerate real, commercial deployments – or real business models.

This period is also a critical juncture for standards, starting with the formalisation of the first phase of standards at the June 3GPP meeting (Release 15), leading up to the full ratification of 5G as the official IMT2020 technology by the International Telecoms Union (ITU ) in 2020.

Much of the technology media is trying to pitch the development and deployment of 5G as a race, either between countries or individual operators. The first fixed-wireless deployments are under way, while the earliest mobile devices are expected by the year end (probably portable 5G/Wi-Fi hotspot modems). 2019 should see a flurry of early launches and the first 5G-capable smartphones becoming available.

Yet those forms of 5G broadband – fixed or ‘enhanced mobile’ – are hardly novelties, despite the gigabit speeds and low latencies promised. In many ways, they risk being overshadowed by continued evolution of 4G networks, which is occurring in parallel.

There are also plenty of IoT-type demonstrations, whether for delivery drones, autonomous vehicles or automated industrial machinery. Yet these seem much less real for now – the value-chains are far from clear, and often they will need networks to be built in new locations, rather than reusing existing towers and backhaul. It also isn’t obvious that large enterprises are willing to pay much for such connectivity, and whether they’ll be happy with ‘slices’ of MNO-controlled networks or if they want to own them outright.

There remain many hard-to-answer questions about 5G’s emergence:

  • Will global consumers switch to 5G phones en masse in 2021–22 or more from 2023–24?
  • Will today’s mobile operators consolidate further or will there be an explosion of new niche providers targetting verticals or specific uses?
  • Is there a ‘race’ between countries to deploy 5G, and if so, why? Do arguments about 5G ‘leadership’ really translate to economic benefit and jobs, and if so, for whom?
  • Will the US, Japan, South Korea and maybe China take a significant lead on 5G, or is it more about geopolitical grandstanding in the Trump/Xi age, and helping national-champion vendors and operators gain a reputational boost?
  • Will 5G, NFV, SDN and edge computing work in true synergy, or will delays or limitations in one area have knock-on impacts on the others?
  • What are the unexpected practical ‘gotchas’ for 5G that might add friction, cost or delay to deployment, or complexity to operations? Is fibre availability for backhaul a critical prerequisite?
  • Does 5G pose an opportunity for new niche suppliers of technology – for example in small cells – or will thinning margins and price pressure from operators and open source force many aspirant vendors out of the market?
  • Will ‘verticals’ and IoT really matter for 5G, and if so will telcos view enterprises more as customers, partners or even suppliers and competitors? Which industries are realistic opportunities for 5G’s new capabilities for low latency or ‘massive IoT’?
  • Who, if anyone, will make a profit from 5G-enabled networks, devices, services and embedded capabilities?

The truth is that many of these questions cannot be definitively answered today, despite the emphatic nature of a lot of industry comment. Here, we present some scenarios and especially look at the idea of pre-requisites: what needs to be done first, for 5G to be successfully deployed or monetised? There are potential bottlenecks ahead, as well as opportunities.

Hopefully, we have plotted the roadmap, even if the industry cannot ‘drive autonomously’ yet.

The rest of this report is structured into the following sections:

  • 5G positive signals – standards, trials and enthusiasm
  • 5G cautions – prerequisites, questions and complexities
  • Verticals – huge opportunity or more market fragmentation and competition?
  • Timelines and practicalities

Think of this report as a weather forecast. 5G will be much like the UK climate: patchy clouds, with rays of sunshine and the occasional storm. The summer will be late but warm, but you’d best pack a 4G or Wi-Fi umbrella just in case.

And just as with weather, trying to do long-range forecasts is very risky. There’s a good chance that circumstances will prove you wrong. But despite that, we have some qualitative predictions stretching out to 2026, at which point we expect to be bombarded with 6G hype, alongside 5G reality.

5G positive indicators: reasons to be happy!

In many ways, the development of 5G is going remarkably well, especially compared to some of the partisan inter- and intra-technology standards warfare of the past.

In the recent past we have seen:

  • Approval by 3GPP of the first New Radio (NR) specifications in December 2017, for Non- Standalone mode, which means that 5G NR can be deployed using the existing 4G core networks.
  • Early engagement by the cellular industry with various industries’ representatives, notably automotive, manufacturing and healthcare. A number of joint bodies have been set up, with the objective of defining ‘vertical’ and especially IoT-centric requirements and testbeds.
  • A timeline for silicon and device availability that aligns much better with that for networks than was the case with 3G or 4G.
  • A whole range of cool demonstrations in Pyeongchang at the South Korean Winter Olympics in early 2018.
  • Research labs for 5G set up around the world.
  • High awareness of 5G among governments, businesses and media, even if it is often over-hyped,as that is hardly unusual for new technologies.
  • An ongoing procession of spectrum auctions for frequencies suitable for 5G, and ready availability of test licences.
  • Good (albeit uneven) progress in adjacent mobile areas such as NFV, SDN, edge computing, cloud RAN, network slicing, automation of processes, AI and so forth.
  • Continued growth of 4G usage, and likelihood of capacity constraints driving the need for future upgrades.
  • Commendable work by both large and small vendors in creating early equipment, and approaching target speeds and latencies more closely than many observers (including the author) thought were probable.
  • Some good early results from trials, especially of high-frequency mmWave networks, which show decent propagation properties and even indoor penetration – albeit through glass, not solid walls – exceeding the (admittedly low) expectations. For instance, AT&T has tested for weather resistance of its mmWave 5G trials – important as some have expected rain or snow to have an impact on propagation.
  • The effectiveness of MIMO (multiple-in, multiple-out) antennas appears to negate some of the poor notional radio properties of midband spectrum in the 3–4GHz range as well. Essentially beam-forming and beam-steering allows radio ‘spikes’ to concentrate power towards actual users’ positions (including indoors), rather than radiating uniformly and thus wastefully.
  • No major fights (yet) over IPR and costly patent licences.
  • Encouraging forecasts from some analysts (not published by us, so we won’t quote them) and trade associations about 5G subscriptions and related services.

Early trial results and 5G deployment plans

While many operators and international laboratories and organisations are testing 5G, a few of the experiments stand out.

Probably the most high profile have been the various South Korean initiatives that took place during the Pyeongchang Winter Olympics, and Verizon’s work on fixed-wireless access in the US. KT and SKT showed various approaches to 5G-connected cars, novel camera footage from 5G-connected drones, real-world usage of mmWave radios and numerous other showcases. Korea is expecting to see launches of commercial 5G services around March 2019.

Verizon announced at the end of 2017 that it was aiming to light up a handful of cities – Sacramento, California most notably – by the end of this year. More details have become clearer recently: initially it will launch fixed 5G for mostly residential users, with mobile variants following around six months afterwards. Samsung has had its 28GHz-band routers approved for both indoor and outdoor use in the US, and these are expected to feature in Verizon’s early offerings. (STL Partners is writing a separate briefing report digging more deeply into Verizon’s 5G strategy, which includes an estimate of its huge investment into fibre for back/fronthaul).

(Mobile launches usually lag fixed-wireless services, as they need more coverage, more testing and a lot more complexity around cell-to-cell handoffs. And within mobile uses, it is usually easier to provide simple devices such as modems or cellular/Wi-Fi hotspots, as phones and voice access require even more work.)

AT&T is being aggressive with its ‘proper’ 5G rollout, as well as its controversial “fake” branding of advanced 4G as ‘5G Evolution’. It is intending to launch standards-based 5G, capable of supporting mobile devices (initially mobile Wi-Fi hotspot ‘pucks’) in at least 12 cities by the end of 2018.

AT&T started demonstrating and testing pre-5G technology in late 2016, including an enterprise trial in mmWave bands, together with Intel. In June 2017, it extended the trials to residential users in Austin, Texas, doing video streaming over fixed-wireless access. This was followed by a small-business fixed- wireless trial in Waco, Texas, which generated good results including 1.2Gbps throughput speeds and 9–12 millisecond latencies. That said, it seems less enthusiastic than Verizon about the general fixed- wireless opportunity1, especially given the backhaul fibre investment needed.

Telco operators that are well advanced on 5G plans include:

  • Japanese operators: NTT DoCoMo, KDDI and SoftBank have all been running multiple trials, for a wide variety of use cases and deployment scenarios. All are expected to have networks up and running in time for the 2020 Summer Olympics. NTT in particular has been very visible, signing contracts with vendors including Nokia and NEC.
  • Chinese operators: Spurred on by its government and Huawei as national champion vendor, all three telcos are deploying significant test networks, in a total of 16 cities across the country. Importantly, the regulator has shown commitment to issuing 5G spectrum in large tranches, and also seems to be encouraging infrastructure both between the operators and also China’s electricity grid operator. Chinese operators have also been quite aggressive on other key technical enablers such as AI/automation and network slicing.
  • Sprint and T-Mobile US: Both operators had previously been talking up 5G, but this has taken on a new perspective since the announcement of their potential merger. T-Mobile’s plan to use 600MHz spectrum for 5G is fairly unique and points to a possible nationwide network much earlier than its peers. Sprint’s hoard of 2.5GHz frequency is also extensive and could be a key differentiator given that the US has been slower to release 3.5–4.5GHz ‘midband’ spectrum than other markets. If their merger goes ahead (possibly a big if, given previous regulatory reluctance) the new T-Mobile may try to do for 5G what Verizon did for 4G – use it as a competitive differentiator to gain market share. It may face challenges getting devices supporting its unique 600MHz band, though – a similar problem that plagued it with the early days of 4G.
  • Deutsche Telekom: Aligning with its US arm, the domestic German arm of DTAG is perhaps the most vocal early enthusiast for 5G in Europe, deploying a growing test network in Berlin in particular. It is also getting its backhaul house in order, deploying tens of thousands more fibre kilometres annually.
  • Telstra: In Australia, local operator Telstra has launched a number of trials, including 5G for fixed-access backhaul to some publicly available Wi-Fi hotspots on the Gold Coast.
  • Spark: In New Zealand, local operator Spark has signalled an intent to deploy 5G (probably for fixed wireless) as early as possible, if it can get spectrum.
  • MTN: One of the few notable developing market 5G trials is that by MTN in South Africa, with Huawei.
  • India: The Indian government has signalled that it expects to announce its overall 5G strategy in June 2018. Although some are talking of 2020, it seems unlikely to gain a broad deployment fast, given economic limitations, especially driven by the 4G rollout and subsequent price war and consolidation between operators.

There are some notable absentees from this list. The UK has various government and MNO-sponsored trials, but little commitment by the telcos to move towards commercial launches yet. The Scandinavian operators, early on 3G and 4G, also seem more diffident this time. So too are the smaller countries in developed Asia; Singapore and Taiwan are also (comparatively) lagging the timelines that might be expected, again reflecting caution over business case.

In the Middle East, Ooredoo, Etisalat and STC have all been keen to be early to market with demo networks, but it’s unclear whether that will translate to broader, rapid deployments.

5G Spectrum

As always with new mobile networks, one of the input requirements is suitable radio spectrum. Generally, 5G seems to be doing fairly well in this regard. Many countries have started initial awards or have them planned for the next year or so.

Various European countries are releasing 3.5GHz ‘mid-band’ spectrum, while the US has earmarked both 600MHz (which T-Mobile has large amounts of) and 28GHz as priorities. Japan’s early focus is on 4.5GHz. In addition, there is a strategy by many operators to progressively switch off old 2G and 3G networks, and ‘refarm’ the bands for 5G.

The general expectation is that 5G will require a combination of three broad sets of frequencies:

  • Low-band, mostly below 2GHz, for wide-area coverage and good indoor penetration
  • Mid-band between 3GHz and 6GHz, for densified, mostly urban networks, probably with complex MIMO antennas
  • High-band above 6GHz, and probably mostly from 20–40GHz, although some are speaking of 90GHz or even higher for local usage.

Notably, many markets are not waiting for the official seal of approval from ITU and its World Radio Congress at the end of 2019, which was supposed to define the first set of ‘harmonised’ 5G frequencies (more accurately, IMT2020). A second set is expected, based on ITU’s ridiculously leisurely process, to be ratified only in 2023. Instead of this timeline, many regulators are either pre- guessing the outcomes (fairly uncontroversial for the 3.5GHz band) or just ignoring them (such as 28GHz in the US and South Korea). We wrote about 5G spectrum in early 2017, discussing this in more depth.

Watch a replay of the free webinar with the report’s authors – (Wednesday 8 August, 4pm BST)

5G is becoming real

In other words, 5G is becoming ‘real’, it’s getting a lot of interest and investment, and the basic technology enablers seem to work, at least in the lab and limited field trials. There are plenty of suggested use cases, and even if some of them prove far away or unrealistic, there should be some that make it through the funnel, plus others that are unanticipated.

That said, there is a cliché that states that any parts of a sentence or speech before the ‘but’ should probably be ignored.

Contents of the 5G report

  • Executive Summary
  • Introduction
  • 5G positive indicators: reasons to be happy!
  • Early trial results and deployment plans
  • Spectrum
  • Summary – the good news!
  • But what are the obstacles to 5G?
  • Densification and network sharing
  • In-building coverage
  • A lack of 5G business models
  • 5G-specific models in a hybrid-network world?
  • Devices and silicon
  • Other issues and concerns
  • Verticals: customers, partners or competitors?
  • Overview
  • Operator networks for verticals? Or private 5G?
  • Thoughts on specific verticals
  • Vendor attitudes to verticals and private networks
  • Timelines and practicalities
  • 5G in name only?
  • Conclusions

Figures:

  • Figure 1: 5G predicted timeline, 2018–2026
  • Figure 2: Who are the 5G bulls and bears?
  • Figure 3: 5G antennas may be larger and heavier than 4G equipment
  • Figure 4:  Multiple dimensions for future wireless networks’ use cases and requirements
  • Figure 5:  Creating private 5G networks involves significant complexity for enterprises
  • Figure 6: Predicted 5G relevance to verticals, 2023-25 timeframe
  • Figure 7:  Numerous applications of machine learning and AI for 5G networks
  • Figure 8: Overall 5G predicted timeline, 2018–26