Reliance Jio: Learning from India’s problem solver

=======================================================================================

Download the additional file on the left for the PPT chart pack accompanying this report

=======================================================================================

Introduction

This year marks the 25th anniversary of mobile networks in India. The huge potential of the market has attracted many players (even as recently as 2016, there were 12 mobile operators in India). But most have had their fingers burned by the complexities of this market, as well as intense competition, particularly following the entry of Reliance Jio in September 2016.

In the past four years, Reliance Jio has gone from strength to strength, becoming the leading telco in terms of mobile subscriber numbers in December 2019, dramatically expanding internet access and driving adoption of digital services across the country. It is not an exaggeration to say that Jio played a major role in the digital transformation of India to date.

Evidence of Jio’s impact on the Indian market

Source: STL Partners

Jio leads Indian telecoms

By delivering broad societal progress and value, Jio has been able to overcome many of the regulatory and political challenges that have hindered other new entrants to the Indian telecoms market. Jio is in good standing as regards its future ambitions in the digital environment, helping it to attract over USD20 billion in investment between April and July 2020 from Facebook, Google and other international investors.

In India, Reliance Jio has trialled elements of a Coordination Age approach, setting out to solve various socio-economic problems by matching supply and demand, while moving up the value chain to unlock further sources of revenue growth.

At the time of Jio’s entry, India was still predominantly a 3G market, with voice calls being the main application. Although there were a multitude of plans on offer and the retail price per minute was among the lowest in the world, mobile communications remained out of reach for many (not helped by high license and spectrum fees that translated into upward pressure on pricing).

Reliance Industries recognised an opportunity to use the advent of 4G technology to build a data-first telecoms player that could support its wider aspirations to develop a globally competitive technology business in India. Accordingly, it obtained a nationwide license to operate a 4G network and encouraged take-up with a promotion that offered customers free voice calls forever.

The existing operators rushed to defend their market positions by dropping their prices resulting in a price war that destroyed value in the market and has led to consolidation and insolvencies such that, aside from Jio, only two privately-owned operators remain – with the real possibility that the market will shrink further and become a duopoly.

STL Partners covered the success of Jio’s disruptive market entry strategy in Telco-Driven Disruption: Will AT&T, Axiata, Reliance Jio and Turkcell succeed? report in 2017. This report considers Jio’s strategy in the context of the Coordination Age. It looks at what this has meant for the market and highlights the implications for operators in other developing markets.

Enter your details below to request an extract of the report

Table of Contents

  • Executive Summary
  • Introduction
  • Interventionist government shapes market
    • Mobile market overview
    • The shifting sands of policy
  • Jio overtakes the incumbents
  • The rise of Reliance Jio
    • Leveraging the strength of a conglomerate
    • Restructuring and renewal
  • Major emphasis on partnerships
    • Start-ups
    • Global technology partners
  • Competitor positions
    • Bharti Airtel faring better than Vodafone Idea
    • Competitors’ relationship with the government
  • Conclusions
    • Lessons for telcos in developing markets
  • Index

Enter your details below to request an extract of the report

Telco ecosystems: How to make them work

The ecosystem business framework

The success of large businesses such as Microsoft, Amazon and Google as well as digital disrupters like Airbnb and Uber is attributed to their adoption of platform-enabled ecosystem business frameworks. Microsoft, Amazon and Google know how to make ecosystems work. It is their ecosystem approach that helped them to scale quickly, innovate and unlock value in opportunity areas where businesses that are vertically integrated, or have a linear value chain, would have struggled. Internet-enabled digital opportunity areas tend to be unsuited to the traditional business frameworks. These depend on having the time and the ability to anticipate needs, plan and execute accordingly.

As businesses in the telecommunications sector and beyond try to emulate the success of these companies and their ecosystem approach, it is necessary to clarify what is meant by the term “ecosystem” and how it can provide a framework for organising business.

The word “ecosystem” is borrowed from biology. It refers to a community of organisms – of any number of species – living within a defined physical environment.

A biological ecosystem

The components of a biological ecosystem

Source: STL Partners

A business ecosystem can therefore be thought of as a community of stakeholders (of different types) that exist within a defined business environment. The environment of a business ecosystem can be small or large.  This is also true in biology, where both a tree and a rainforest can equally be considered ecosystem environments.

The number of organisms within a biological community is dynamic. They coexist with others and are interdependent within the community and the environment. Environmental resources (i.e. energy and matter) flow through the system efficiently. This is how the ecosystem works.

Companies that adopt an ecosystem business framework identify a community of stakeholders to help them address an opportunity area, or drive business in that space. They then create a business environment (e.g. platforms, rules) to organise economic activity among those communities.  The environment integrates community activities in a complementary way. This model is consistent with STL Partners’ vision for a Coordination Age, where desired outcomes are delivered to customers by multiple parties acting together.

Enter your details below to request an extract of the report

Characteristics of business ecosystems that work

In the case of Google, it adopted an ecosystem approach to tackle the search opportunity. Its search engine platform provides the environment for an external stakeholder community of businesses to reach consumers as they navigate the internet, based on what consumers are looking for.

  • Google does not directly participate in the business-consumer transaction, but its platform reduces friction for participants (providing a good customer experience) and captures information on the exchange.

While Google leverages a technical platform, this is not a requirement for an ecosystem framework. Nespresso built an ecosystem around its patented coffee pod. It needed to establish a user-base for the pods, so it developed a business environment that included licensing arrangements for coffee machine manufacturers.  In addition, it provided support for high-end homeware retailers to supply these machines to end-users. It also created the online Nespresso Club for coffee aficionados to maintain demand for its product (a previous vertically integrated strategy to address this premium coffee-drinking niche had failed).

Ecosystem relevance for telcos

Telcos are exploring new opportunities for revenue. In many of these opportunities, the needs of the customer are evolving or changeable, budgets are tight, and time-to-market is critical. Planning and executing traditional business frameworks can be difficult under these circumstances, so ecosystem business frameworks are understandably of interest.

Traditional business frameworks require companies to match their internal strengths and capabilities to those required to address an opportunity. An ecosystem framework requires companies to consider where those strengths and capabilities are (i.e. external stakeholder communities). An ecosystem orchestrator then creates an environment in which the stakeholders contribute their respective value to meet that end. Additional end-user value may also be derived by supporting stakeholder communities whose products and services use, or are used with, the end-product or service of the ecosystem (e.g. the availability of third party App Store apps add value for end customers and drives demand for high end Apple iPhones). It requires “outside-in” strategic thinking that goes beyond the bounds of the company – or even the industry (i.e. who has the assets and capabilities, who/what will support demand from end-users).

Many companies have rushed to implement ecosystem business frameworks, but have not attained the success of Microsoft, Amazon or Google, or in the telco arena, M-Pesa. Telcos require an understanding of the rationale behind ecosystem business frameworks, what makes them work and how this has played out in other telco ecosystem implementations. As a result, they should be better able to determine whether to leverage this approach more widely.

Table of Contents

  • Executive Summary
  • The ecosystem business framework
  • Why ecosystem business frameworks?
    • Benefits of ecosystem business frameworks
  • Identifying ecosystem business frameworks
  • Telco experience with ecosystem frameworks
    • AT&T Community
    • Deutsche Telekom Qivicon
    • Telecom Infra Project (TIP)
    • GSMA Mobile Connect
    • Android
    • Lessons from telco experience
  • Criteria for successful ecosystem businesses
    • “Destination” status
    • Strong assets and capabilities to share
    • Dynamic strategy
    • Deep end-user knowledge
    • Participant stakeholder experience excellence
    • Continuous innovation
    • Conclusions
  • Next steps
    • Index

Enter your details below to request an extract of the report

A new role for telcos in smart cities

This report considers how telecommunications operators could play a deeper role in smart city projects, arguing that the multi-stakeholder and multidisciplinary nature of smart city strategies requires a high level of coordination. Some telecommunications operators may be able to play that role. That will bring the operator closer to the citizens, who, in turn, are also their customers. This new position could enable new business models for telecommunications operators.

With the aim of identifying how telecoms operators can evolve and deepen their reach into the smart cities vertical, this report explores the various forms of smart city governance used or that could be used in the development of smart city strategies, and the potential value for telcos in participating in each of them.

Enter your details below to request an extract of the report

The smart city lifecycle

The evolution of smart city strategies

The concept of smart city and smart community goes back to 1997 when the California Institute for Smart Communities developed a “Smart Communities Guidebook” in which smart community was defined as following:

“A smart community is simply that: a community in which government, business, and residents understand the potential of information technology, and make a conscious decision to use that technology to transform life and work in their region in significant and positive ways.”

Since then, the definition of smart city has evolved between an approach majorly focussed on the use of technology and another one towards a more collaborative approach among different disciplines trying to make the entire concept less technology centric. The latter has driven the attention on the concept of smart city. In fact, on the technology side, the advent of the Internet of Things (IoT) has provided the technological tools for simply implementing the definition by the California Institute for Smart Communities. On the socio-economics side, the continuous demographic pressure on cities and their increasing economic importance have pushed city administrations to re-think the purpose of the city and the services provided to citizens, businesses and other city stakeholders. The combination of the possibilities offered by technology and the increasing socio-economic importance of cities have brought the concept of the smart city to the top of the political agenda and challenged the business community to explore how to transform smart cities into a business opportunity.

Putting aside the socio-economic and political aspects of smart cities, the IoT has become an important technological framework for smart city development. The IoT transforms spaces into connected and intelligent ones. The data are gathered, exchanged, analysed and actions are taken based on that analysis. However, the data gathered within smart cities is spread across multiple different systems. The key role of IoT is therefore to provide the technological fabric for the smooth functioning of a smart city’s “system of systems” that benefits both citizens and businesses.

In practice, many smart city projects evolve organically, from the bottom up, rather than from a top-down technology driven model. Several cities have started experimenting with the application of IoT in their services, initially, focussing on a specific application. There have been then several smart parking projects, intelligent lighting projects, smart public safety solutions and so on. But that is only the first step. As per any IoT solution, the user appreciates the value of the IoT project outcome – the beauty of the data gathered and the value of its analysis – and wants then to explore more. In that way, the smart parking projects have expanded into environmental monitoring solutions and/or public safety solutions, gradually morphing into more complex projects.

Introducing the smart city strategy lifecycle

The evolution of smart city projects requires an overall smart city strategy that needs to be managed. The smart city strategy does not have a conclusion, but rather evolves continuously based on achievements, issues and new city needs. Therefore, it is important to see smart city strategies with a lifecycle approach, broken into five key phases.

Figure 1: Smart city strategy lifecycle

Smart city lifecycle: assessment > design > launch > implementation > monitoringSource: STL Partners

  • Smart city assessment: This phase looks at the needs of the city, as well as its level of digital maturity. The digital maturity can be addressed in a variety of ways through the monitoring framework (discussed in more detail later in the report). This phase needs to be very inclusive of all the city stakeholders: businesses, academia, public organisations and citizens’ groups. The output of the smart city assessment is then used in the strategy design phase.
  • Strategy design: A smart city strategy document should contain overall objectives, projects to implement, and resources to use. The strategy document should also include a monitoring framework.
  • Strategy launch: Following agreement on a smart city strategy, some cities run an external consultation with city stakeholders for a sort of wider evaluation. The launch phase’s main goal is to make the city aware of the strategy and the roadmap for implementation. The inclusiveness of the city as a whole in the process is a key factor of success.
  • Strategy implementation: The length of this phase really depends on the decisions in the roadmap. The roadmap could include both short-term and long-term projects.
  • Smart city monitoring: In this phase the monitoring framework established in the strategy design phase is put into operation. That framework should assess the evolution of the smart city strategy implementation. The output of the smart city monitoring can enable another cycle, starting with a fresh assessment. The repetition of the cycle can also be established in the smart city strategy.

Those participating in smart city monitoring, assessment and strategy design phases tend to be long-term, ongoing partners of municipalities, while the implementation phase includes many more partners on a project basis. For telcos seeking to play a broader role in smart cities, the goal is therefore to be more involved in the monitoring, assessment and strategy phases.

Table of contents

  • Executive Summary
  • Introduction
    • Research methodology
  • The smart city lifecycle
    • The evolution of smart city strategies
    • Introducing the smart city strategy lifecycle
    • Smart city monitoring framework: What smart cities are trying to achieve
  • Smart city governance models: How cities are working towards their goals
    • Defining smart city governance
    • Mapping smart city governance models
    • Smart governance case studies
  • The smart city coordination opportunity for telcos
    • Telcos’ current participation in smart city governance
    • How telcos can develop a coordination role in smart cities
  • Conclusions and recommendations

Enter your details below to request an extract of the report

The IoT is dead: Long live the I4T – the Internet for Things

If you don’t subscribe to our research yet, you can download a free version as part of our sample report series. If you do subscribe, sign in and use the download link on the left to get the full version.

Introduction

The Internet for Things and the Coordination Age

In our recent research report The Coordination Age: A third age of telecoms, STL Partners described how the global economy is moving into a new age: the Coordination Age.

This is driven by a global need to improve the efficiency of resource utilisation, arising from a combination of developments in both demand and supply. In terms of demand, there are pressing needs from all customers to make less do more. On the supply side, technologies like AI, automation, ‘digitisation’, NFV/SDN, and potentially 5G, provide a smarter and more flexible way to do things.

The consequence is that coordination is the job that needs to be done across many market areas. People, things and information need to be brought together at the right time and in the right place to deliver the desired outcome.

Examples include:

  • Smart home: devices, sensors, appliances and applications created by many different companies need to be coordinated into an easy-to-manage solution for consumers (see our latest report Can telcos create a compelling smart home?)
  • Healthcare: where clinicians, patients, treatments, resources and information need to be coordinated for successful healthcare outcomes (see Telcos in health – Part 1: Where is the opportunity? and Part 2: How to crack the healthcare opportunity)
  • Transport: coordination is needed to manage transport flows for both public and private transportation, to ensure the best use of available resources and where to direct investment most effectively
  • Logistics: to manage the distribution and delivery of stock and produced goods across highly complex, international supply chains
  • Industry: to ensure that manufacturing and supply-chain processes deliver, assemble and process goods and materials efficiently

The best description we’ve come up with for the common need across these areas is “to make our world run better”. It’s not a generic do-gooding mission, it’s about improving what people and companies get for their time, money, effort and attention.

It’s an over-arching principle (or meta-trend) that makes sense of, and gives direction to, the many technology led ideas like “Internet of Things”, “Industry 4.0”, and others.

But … so what?

It matters because to have a winning strategy first requires a superior (or at least appropriate) mental grasp of the environment, or frame of reference, for that strategy.

Put another way, if you don’t understand how the new game is being played, how can you possibly win?

Telcos frequently missed this trick in the previous 30-year transition into the Information Age.

Figure 1: The three ages of telecoms / ICT

Source: STL Partners

Enter your details below to receive a free version of this report as part of our sample report series

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

Over the last 30 years, telcos have continued to think, talk and act like network builders. Consequently, telcos did well out of the broadband and mobile data revolution, but they largely missed out on the services that make use of the raw connectivity and turn it into something more useful.

There are numerous examples of changes the Information Age brought to communications, information discovery, and commerce. These new ways of doing things have ultimately been dominated by other players, like Google, Facebook, Apple, Alibaba and Amazon.

Sometimes, when telcos spotted those opportunities, they missed out because they applied old-style business model approaches in the new world. For example, they often tried to make payments and early information products walled gardens and/or failed to grasp the need to collaborate with others to create a proposition with sufficient scale in practice (e.g. see Apple Pay & Weve Fail: A Wake Up Call).

We discuss the reasons why telcos missed opportunities in more depth in our report How the coordination age changes the game.

Now that growth is reaching the end of its cycle in communications (see Figure 2) telcos have a simple choice: stay as a pure connectivity player in a flat or declining market or develop new service propositions in addition.

Figure 2: The well-worn path of slowing telecoms growth

Source: STL Partners

Whichever route they choose (connectivity only, or connectivity plus services), to succeed and grow going forward, telcos need to rethink their purpose and role in the economy.

How does an “Internet for Things” fit with this?

From about 1990 onwards, the internet was the catalyst for change and growth in the Information Age. By making a huge trove of new information – the World Wide Web – accessible and discoverable, and enabling the delivery of data at volume, it ultimately unlocked new business models, huge disruption, and digital transformation across the entire global economy.

To move into the next age – the Coordination Age – a similar concept and mechanism is needed to be able to discover and access connected things[1].

What’s wrong with the Internet of Things?

There’s a catch with what is currently called the ‘Internet of Things’: it isn’t an internet. It isn’t even a continuous network, and as such is severely limited in its capacity to grow, evolve in intelligence and capability, and deliver the benefits sought.

The Internet of Things (IoT) originated as concept around the turn of the century and has been widely discussed since the early 2010s. Over that time many thousands of ‘smart devices’ and machine to machine (M2M) applications have been developed, creating efficiencies and enhancing functionality in industries as diverse as agriculture, logistics, transportation and medicine. Such applications continue to increase and are often described as ‘the IoT’.

However, most current applications are in reality closed (and private) command and control solutions using standalone technology to limited ends – typically to enhance existing industrial, business or lifestyle functions – such as crop-watering applications that only turn on when the ground is dry, or lifestyle apps like Nest that allow remote control of household functions.

In fact, most of what is commonly referred to as ‘IoT’ is simply an effective use of ICT, contributing to a growing world of connected things – but not constituting ‘an internet’, which is a searchable network of networks that allows users to find and connect to any end-point for which they have appropriate access[2].

There’s a second problem. What’s really needed is not just an Internet of Things, but an “Internet for Things”. Interestingly, in one of the first mentions of the concept, that is precisely what it was called.

“We need an internet for things, a standardized way for computers to understand the real world,”

Kevin Ashton, Auto ID Center at MIT from 1999[3]

The reason STL Partners thinks an Internet for Things (I4T) is a more useful concept today, is that to make some of the most complex and dynamic applications of the Coordination Age work, “things”, including not just sensors but also IT systems, will need to be able to find and communicate with each other relatively autonomously.

The essential components of an Internet for Things

A true Internet for Things, would be much more open than most current IoT systems, and would:

  • Allow discovery of previously unknown sources (e.g. through a search engine), and interactions between communities of things within public or private domains.
  • Allow ‘things’ (including IT processes and software as well as devices) to discover each other within certain predefined rules or protocols, rather than either being given carte blanche to talk with any strange device, or being firmly controlled by a single, central authority.
  • Contain data that is published, searchable, and accessible to anyone – or anything – with the appropriate security access. It would bring data from machines, sensors and other intelligent things into the sharing economy and semi-public domain.

It could also open the door to much more radical initiatives that would combine data from multiple sources to deliver outcomes as yet unconceived of – perhaps triggering further revolutions in terms of efficiency, productivity and innovation.

So why isn’t there an Internet for Things that works more like the world-wide web, but in a machine-based context?

Many companies implicitly recognise the limitations of today’s IoT and are working on solutions to overcome them, some of which are covered in this report, while others will be examined in upcoming reports on Digital Twins and the Industrial Internet of Things (IIoT). This report details further what an Internet for Things is, how it differs from what is described as the Internet of Things, its benefits, and some of the steps that have so far been taken towards it.

What is the Internet for Things (I4T)?

How is an Internet for Things different to an Internet of Things?

Before considering what it would take to create an Internet for Things, it is useful to understand what is currently meant by the expression the “Internet of Things” (IoT).

First, what is a “thing”?

The classic concept of an IoT “thing” is a sensor, or a connected device like a doorbell or machine in a factory. In STL Partners’ view this definition is too limited for the range of real world applications, and the “thing” being connected may be, for example:

  • a bit of data from a single sensor (e.g. the temperature measured by a given sensor, on an aircraft, at a specific time)
  • an aggregated result from a set of sensors (e.g. the average temperature near to a runway in an airport)
  • an industrial process (e.g. a status check on the maintenance needs on an aircraft’s tyres)
  • a consumer process (e.g. an app predicting the likely time of arrival of a flight).

Figure 3: Some examples of what a “thing” can be in the I4T

Examples of things in the I4T

All of these are effectively “things” and their operators may need or wish to share or access this data at any time.

The Internet of Things

Most simple definitions of the IoT describe the connection across the internet of computing devices embedded in everyday devices and machines, such as sensors and actuators, enabling them to send and receive data, be monitored, adjusted, switched on and off and so on.

This describes something that is more like conventional point-to-point or client/server communications than the Internet with which most people are familiar via the world-wide web. The Internet is a relatively open space, in which participants and resources can be identified in various searchable ways – through IP addresses, email addresses, URLs etc. – and located and engaged with.

The openness of the world-wide web makes the volume and nature of possible connections between IP-enabled entities almost infinite. The interactivity between connected things in the IoT, on the other hand, is generally much more limited. It might be better described currently as a world of partially connected things.

What is an “Internet for Things” (I4T)?

STL’s definition of an ‘Internet for Things’ is as follows:

The Internet for Things (I4T) is an open network of participatory, connected devices, objects, processes and entities. I4T entities can be located and interacted with according to their assigned security and privacy settings.

Advantages – what are the benefits of the “Internet for Things”?

An Internet for Things would not just be a collection of smart devices. It would be a digital enabling fabric for wholly new functionality, of potentially great benefit to individuals, enterprises and our environment.

    • An Internet for Things would allow data to be combined and enriched in previously inconceivable ways – mashing up intelligence from different and seemingly unconnected sources for informational, security and commercial purposes.
    • It would enable more meaningful machine to machine conversations. One device might offer enhanced functionality by deriving important contextual information from other communicable entities or devices in its environment.
    • To take a simple example, an in-building climate controller might offer more accurate control based on data taken from security devices, if it could combine data from sources within its network, such as security devices and thermostats, with external sources such as personal smartphones and smart watches, to determine which parts of the building should be heated/cooled, or local weather forecasts, in order to adjust settings in anticipation of changing temperatures.
    • It would trigger a leap in the volume and quality of intelligence available to individuals and agencies. All kinds of “things” – buildings, vehicles, infrastructure elements, people – become data points and data sources, some static, some mobile, all contributing to a vast, searchable pool of crowd-sourced information. This could be mashed and downloaded on demand to create new intelligence for users working in areas unrelated to the source data – e.g. climate data being a driver for predicting cinema attendance figures, in turn used to review film release dates, trigger ice-cream orders and so on.
    • The potential of the Internet for Things is emerging just as the world is facing massive challenges in terms of the use of its resources as we’ve outlined in The Coordination Age: A Third Age for telecoms. These resources and issues range from industrial productivity, climate change, water shortages, major weather events, the move to renewable sources of energy, air pollution and garbage disposal, to name only a few.

Contents of the I4T report:

  • Executive Summary
  • Introduction
  • Credits
  • The Internet for Things and the Coordination Age
  • How does an “Internet for Things” fit with this?
  • What’s wrong with the Internet of Things?
  • The essential components of an Internet for Things
  • What is the Internet for Things (I4T)?
  • How is an Internet for Things different to an Internet of Things?
  • Advantages – what can the “Internet for Things” offer?
  • What problems does the I4T solve?
  • Problem 1: The use case paradox
  • Problem 2: No one really wants to be coordinated by someone else
  • Problem 3: A classic case of warehouse interruptus
  • Two approaches to creating the I4T…so far
  • Interoperability forums
  • Dating services for digital twins
  • Civil engineering: Making all the pieces work together in real life
  • Conclusions: It’s a tough job – but somebody’s got to do it

Figures:

  1. The three ages of telecoms / ICT
  2. The well-worn path of slowing telecoms growth
  3. Some examples of what a “thing” can be
  4. Players in the logistics ecosystem example
  5. Three functions of digital twins
  6. A possible Internet for Things (I4T) ecosystem
  7. Iotic Labs “Lego”
  8. BAM Nuttall and Iotic’s learning camera application to monitor machines

 

[1]A suitable level of security and manageability is obviously required too. More on this later.

[2] Places on the Internet may be freely viewable to all comers or need permissions such as user IDs and passwords, for example.

[3] Kevin Ashton was a Procter & Gamble Executive who headed the MIT Center at the time:   https://www.forbes.com/global/2002/0318/092.html#7a164e0f3c3e. He is regarded as the author of the term “The Internet of Things”,  https://iot-analytics.com/internet-of-things-definition/

Enter your details below to receive a free version of this report as part of our sample report series

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

 

Telcos in health – Part 2: How to crack the healthcare opportunity

This report is a follow-up from our first report Telcos in health – Part 1: Where is the opportunity? which looked at overarching trends in digital health and how telcos, global internet players, and health focused software and hardware vendors are positioning themselves to address the needs of resource-strained healthcare providers.

It also build on in depth case studies we did on TELUS Health and Telstra Health.

Telcos should invest in health if…

  • They want to build new revenue further up the IT value chain
  • They are prepared to make a long term commitment
  • They can clearly identify a barrier to healthcare access and/or delivery in their market

…Then healthcare is a good adjacent opportunity with strong long term potential that ties closely with core telco assets beyond connectivity:

  • Relationships with local regulators
  • Capabilities in data exchange, transactions processing, authentication, etc.

Telcos can help healthcare systems address escalating resourcing and service delivery challenges

Pressures on healthcare - ageing populations and lack of resources
Chart showing the dynamics driving challenges in healthcare systems

Telcos can help overcome the key barriers to more efficient, patient-friendly healthcare:

  • Permissions and security for sharing data between providers and patients
  • Surfacing actionable insights from patient data (e.g. using AI) while protecting their privacy

Enter your details below to request an extract of the report

Why telcos’ local presence makes them good candidates to coordinate the digital and physical elements of healthcare

  • As locally regulated organisations, telcos can position themselves as more trustworthy than global players for exchange and management of health data
  • Given their universal reach, telcos make good partners for governments seeking to improve access and monitor quality of healthcare, e.g.:
    • Telco-agnostic, national SMS shortcodes could be created to enable patients to access health information and services, or standard billing codes linked to health IT systems for physicians to send SMS reminders
    • Partner with health delivery organisations to ensure available mobile health apps meet best practice guidelines
    • Authentication and digital signatures for high-risk drugs like opioids
  • Healthcare applications need more careful development than most consumer sectors, playing to telcos’ strengths – service developers should not take a “fail fast” approach with people’s health

Telcos have further reach across the diverse  healthcare ecosystem than most companies

The complexity of healthcare systems - what needs to be linked
To coordinate healthcare, you need to make these things work together

However, based on the nine telco health case studies in this report, to successfully help healthcare customers adopt IoT, data-driven processes and AI, telcos must offer at least some systems integration, and probably develop much more health-specific IT solutions.

Case study overview: Depth of healthcare focus

Nine telcos shown on a spectrum of the kind of healthcare services they provide
Where Vodafone, AT&T, BT, Verizon, O2, Swisscom, Telstra, Telenor Tonic and TELUS Health fit on a spectrum of services to healthcare,

Enter your details below to request an extract of the report