5G standalone (SA) core: Why and how telcos should keep going

Major 5G Standalone deployments are experiencing delays…

There is a widespread opinion among telco industry watchers that deployments of the 5G Standalone (SA) core are taking longer than originally expected. It is certainly the case that some of the world’s leading operators, and telco cloud innovators, are taking their time over these deployments, as illustrated below:

  • AT&T: Has no current, publicly announced deadline for launching its 5G SA core, which was originally expected to be deployed in mid-2021.
  • Deutsche Telekom: Launched an SA core in Germany on a trial basis in September 2022, having previously acknowledged that SA was taking longer than originally expected. In Europe, the only other opco that is advancing towards commercial deployment is Magenta Telekom in Austria. In 2021, the company cited various delay factors, such as 5G SA not being technically mature enough to fulfil customers’ expectations (on speed and latency), and a lack of consumer devices supporting 5G SA.
  • Rakuten Mobile: Was expected to launch an SA core co-developed with NEC in 2021. But at the time of writing, this had still not launched.
  • SK Telecom: Was originally expected to launch a Samsung-provided SA core in 2020. However, in November 2021, it was announced that SK Telecom would deploy an Ericsson converged Non-standalone (NSA) / SA core. By the time of writing, this had still not taken place.
  • Telefónica: Has carried out extensive tests and pilots of 5G SA to support different use cases but has no publicly announced timetable for launching the technology commercially.
  • Verizon: Originally planned to launch its SA core at the end of 2021. But this was pushed back to 2022; and recent pronouncements by the company indicate a launch of commercial services over the SA core only in 2023.
  • Vodafone: Has launched SA in Germany only, not in any of its other markets; and even then, nationwide SA coverage is not expected until 2025. An SA core is, however, expected to be launched in Portugal in the near future, although no definite deadline has been announced. A ‘commercial pilot’ in three UK cities, launched in June 2021, had still not resulted in a full commercial deployment by the time of writing.

…but other MNOs are making rapid progress

In contrast to the above catalogue of delay, several other leading operators have made considerable progress with their standalone deployments:

  • DISH: Launched its SA core- and open RAN-based network in the US, operated entirely over the AWS cloud, in May 2022. The initial population coverage of the network was required to be 20%. This is supposed to rise to 70% by June 2023.
  • Orange: Proceeding with a Europe-wide roll-out, with six markets expected to go live with SA cores in 2023.
  • Saudi Telecom Company (STC): Has launched SA services in two international markets, Kuwait (May 2021) and Bahrain (May 2022). Preparations for a launch in Saudi Arabia were ongoing at the time of writing.
  • Telekom Austria Group (A1): Rolling out SA cores across four markets in Central Europe (Bulgaria, Croatia, Serbia and Slovenia), although no announcement has been made regarding a similar deployment in its home market of Austria. In June 2022, A1 also carried out a PoC of end-to-end, SA core-enabled network slicing, in partnership with Amdocs.
  • T-Mobile US: Has reportedly migrated all of its mobile broadband traffic over to its SA core, which was launched back in 2020. It also launched one of the world’s first voice-over-New Radio (VoNR) services, run over the SA core, in parts of two cities in June 2022.
  • Zain (Kuwait): Launched SA in Saudi Arabia in February 2022, while a deployment in its home market was ongoing at the time of writing.
  • There are also a number of trials, and prospective and actual deployments, of SA cores over the public cloud in Europe. These are serving the macro network, not edge or private-networking use cases. The most notable examples include Magenta Telekom (Deutsche Telekom’s Austrian subsidiary, partnering with Google Cloud); Swisscom (partnering with AWS); and Working Group Two (wgtwo) – a Cisco and Telenor spin-off – that offers a multi-tenant, cloud-native 5G core delivered to third-party MNOs and MVNOs via the AWS cloud.
  • The three established Chinese MNOs are all making rapid progress with their 5G SA roll-outs, having launched in either 2020 (China Telecom and China Unicom) or 2021 (China Mobile). The country’s newly launched, fourth national player, Broadnet, is also rolling out SA. However, it is not publicly known what share of the country’s reported 848 million-odd 5G subscribers (at March 2022) were connected to SA cores.
  • At least eight other APAC operators had launched 5G SA-based services by July 2022, including KT in South Korea, NTT Docomo and SoftBank in Japan and Smart in the Philippines.

Enter your details below to request an extract of the report

Many standalone deployments in the offing – but few fixed deadlines

So, 5G standalone deployments are definitely a mixed bag: leading operators in APAC, Europe, the Middle East and North America are deploying and have launched at scale, while other leading players in the same regions have delayed launches, including some of the telcos that have helped drive telco cloud as a whole over the past few years, e.g. AT&T, Deutsche Telekom, Rakuten, Telefónica and Vodafone.

In the July 2022 update to our Telco Cloud Deployment Tracker, which contained a ‘deep dive’ on 5G core roll-outs, we presented an optimistic picture of 5G SA deployments. We pointed out that the number of SA and converged NSA / SA cores. We expect to be launched in 2022 outnumbered the total of NSA deployments. However, as illustrated in the figure below, SA and converged NSA/SA cores are still the minority of all 5G cores (29% in total).

We should also point out that some of the SA and converged NSA / SA deployments shown in the figure below are still in progress and some will continue to be so in 2023. In other words, the launch of these core networks has been announced and we have therefore logged them in our tracker, but we expect that the corresponding deployments will be completed in the remainder of 2022 or in 2023, based on a reasonable, typical gap between when the deployments are publicly announced and the time it normally takes to complete them. If, however, more of these predicted deployments are delayed as per the roll-outs of some of leading players listed above, then we will need to revise down our 2022 and 2023 totals.

Global 5G core networks by type, 2018 to 2023

 

Source: STL Partners

Table of contents

  • Executive Summary
  • Introduction
    • Major 5G Standalone deployments are experiencing delays
    • …but other MNOs are making rapid progress
    • Many SA deployments in the offing – but few fixed deadlines
  • What is holding up deployments?
    • Mass-market use cases are not yet mature
    • Enterprise use cases exploiting an SA core are not established
    • Business model and ROI uncertainty for 5G SA
    • Uncertainty about the role of hyperscalers
    • Coordination of investments in 5G SA with those in open RAN
    • MNO process and organisation must evolve to exploit 5G SA
  • 5G SA progress will unlock opportunities
    • Build out coverage to improve ‘commodity’ services
    • Be first to roll out 5G SA in the national market
    • For brownfield deployments, incrementally evolve towards SA
    • Greenfield deployments
    • Carefully elaborate deployment models on hyperscale cloud
    • Work through process and organisational change
  • Conclusion: 5G SA will enable transformation

    Related research

    Previous STL Partners reports aligned to this topic include:

  • Telco Cloud Deployment Tracker: 5G core deep dive
  • Telco cloud: short-term pain, long-term gain
  • Telco Cloud Deployment Tracker: 5G standalone and RAN

Enter your details below to request an extract of the report

VNFs on public cloud: Opportunity, not threat

VNF deployments on the hyperscale cloud are just beginning

Numerous collaboration agreements between hyperscalers and leading telcos, but few live VNF deployments to date

The past three years have seen many major telcos concluding collaboration agreements with the leading hyperscalers. These have involved one or more of five business models for the telco-hyperscaler relationship that we discussed in a previous report, and which are illustrated below:

Five business models for telco-hyperscaler partnerships

Source: STL Partners

In this report, we focus more narrowly on the deployment, delivery and operation by and to telcos of virtualised and cloud-native network functions (VNFs / CNFs) over the hyperscale public cloud. To date, there have been few instances of telcos delivering live, commercial services on the public network via VNFs hosted on the public cloud. STL Partners’ Telco Cloud Deployment Tracker contains eight examples of this, as illustrated below:

Major telcos deploying VNFs in the public cloud

Source: STL Partners

Enter your details below to request an extract of the report

Telcos are looking to generate returns from their telco cloud investments and maintain control over their ‘core business’

The telcos in the above table are all of comparable stature and ambition to the likes of AT&T and DISH in the realm of telco cloud but have a diametrically opposite stance when it comes to VNF deployment on public cloud. They have decided against large-scale public cloud deployments for a variety of reasons, including:

  • They have invested a considerable amount of money, time and human resources on their private clouddeployments, and they want and need to utilise the asset and generate the RoI.
  • Related to this, they have generated a large amount of intellectual property (IP) as a result of their DIY cloud– and VNF-development work. Clearly, they wish to realise the business benefits they sought to achieve through these efforts, such as cost and resource efficiencies, automation gains, enhanced flexibility and agility, and opportunities for both connectivityand edge compute service innovation. Apart from the opportunity cost of not realising these gains, it is demoralising for some CTO departments to contemplate surrendering the fruit of this effort in favour of a hyperscaler’s comparable cloud infrastructure, orchestration and management tools.
  • In addition, telcos have an opportunity to monetise that IP by marketing it to other telcos. The Rakuten Communications Platform (RCP) marketed by Rakuten Symphony is an example of this: effectively, a telco providing a telco cloud platform on an NFaaS basis to third-party operators or enterprises – in competition to similar offerings that might be developed by hyperscalers. Accordingly, RCP will be hosted over private cloud facilities, not public cloud. But in theory, there is no reason why RCP could not in future be delivered over public cloud. In this case, Rakuten would be acting like any other vendor adapting its solutions to the hyperscale cloud.
  • In theory also, telcos could also offer their private telcoclouds as a platform, or wholesale or on-demand service, for third parties to source and run their own network functions (i.e. these would be hosted on the wholesale provider’s facilities, in contrast to the RCP, which is hosted on the client telco’s facilities). This would be a logical fit for telcos such as BT or Deutsche Telekom, which still operate as their respective countries’ communications backbone provider and primary wholesale provider

BT and Deutsche Telekom have also been among the telcos that have been most visibly hostile to the idea of running NFs powering their own public, mass-market services on the public and hyperscale cloud. And for most operators, this is the main concern making them cautious about deploying VNFs on the public cloud, let alone sourcing them from the cloud on an NFaaS basis: that this would be making the ‘core’ telco business and asset – the network – dependent on the technology roadmaps, operational competence and business priorities of the hyperscalers.

Table of contents

  • Executive Summary
  • Introduction: VNF deployments on the hyperscale cloud are just beginning
    • Numerous collaboration agreements between hyperscalers and leading telcos, but few live VNF deployments to date
    • DISH and AT&T: AWS vs Azure; vendor-supported vs DIY; NaaCP vs net compute
  • Other DIY or vendor-supported best-of-breed players are not hosting VNFs on public cloud
    • Telcos are looking to generate returns from their telco cloud investments and maintain control over their ‘core business’
    • The reluctance to deploy VNFs on the cloud reflects a persistent, legacy concept of the telco
  • But NaaCP will drive more VNF deployments on public cloud, and opportunities for telcos
    • Multiple models for NaaCP present prospects for greater integration of cloud-native networks and public cloud
  • Conclusion: Convergence of network and cloud is inevitable – but not telcos’ defeat
  • Appendix

Related Research

 

Enter your details below to request an extract of the report

Why and how to go telco cloud native: AT&T, DISH and Rakuten

The telco business is being disaggregated

Telcos are facing a situation in which the elements that have traditionally made up and produced their core business are being ‘disaggregated’: broken up into their component parts and recombined in different ways, while some of the elements of the telco business are increasingly being provided by players from other industry verticals.

By the same token, telcos face the pressure – and the opportunity – to combine connectivity with other capabilities as part of new vertical-specific offerings.

Telco disaggregation primarily affects three interrelated aspects of the telco business:

  1. Technology:
    • ‘Vertical’ disaggregation: separating out of network functions previously delivered by dedicated, physical equipment into software running on commodity computing hardware (NFV, virtualisation)
    • ‘Horizontal’ disaggregation: breaking up of network functions themselves into their component parts – at both the software and hardware levels; and re-engineering, recombining and redistributing of those component parts (geographically and architecturally) to meet the needs of new use cases. In respect of software, this typically involves cloud-native network functions (CNFs) and containerisation
    • Open RAN is an example of both types of disaggregation: vertical disaggregation through separation of baseband processing software and hardware; and horizontal disaggregation by breaking out the baseband function into centralised and distributed units (CU and DU), along with a separate, programmable controller (RAN Intelligent Controller, or RIC), where all of these can in theory be provided by different vendors, and interface with radios that can also be provided by third-party vendors.
  2. Organisational structure and operating model: Breaking up of organisational hierarchies, departmental siloes, and waterfall development processes focused on the core connectivity business. As telcos face the need to develop new vertical- and client-specific services and use cases beyond the increasingly commoditised, low-margin connectivity business, these structures are being – or need to be – replaced by more multi-disciplinary teams taking end-to-end responsibility for product development and operations (e.g. DevOps), go-to-market, profitability, and technology.

Transformation from the vertical telco to the disaggregated telco

3. Value chain and business model: Breaking up of the traditional model whereby telcos owned – or at least had end-to-end operational oversight over – . This is not to deny that telcos have always relied on third party-owned or outsourced infrastructure and services, such as wholesale networks, interconnect services or vendor outsourcing. However, these discrete elements have always been welded into an end-to-end, network-based services offering under the auspices of the telco’s BSS and OSS. These ensured that the telco took overall responsibility for end-to-end service design, delivery, assurance and billing.

    • The theory behind this traditional model is that all the customer’s connectivity needs should be met by leveraging the end-to-end telco network / service offering. In practice, the end-to-end characteristics have not always been fully controlled or owned by the service provider.
    • In the new, further disaggregated value chain, different parts of the now more software-, IT- and cloud-based technology stack are increasingly provided by other types of player, including from other industry verticals. Telcos must compete to play within these new markets, and have no automatic right to deliver even just the connectivity elements.

All of these aspects of disaggregation can be seen as manifestations of a fundamental shift where telecoms is evolving from a utility communications and connectivity business to a component of distributed computing. The core business of telecoms is becoming the processing and delivery of distributed computing workloads, and the enablement of ubiquitous computing.

Enter your details below to request an extract of the report

Telco disaggregation is a by-product of computerisation

Telco industry disaggregation is part of a broader evolution in the domains of technology, business, the economy, and society. This evolution comprises ‘computerisation’. Computing analyses and breaks up material processes and systems into a set of logical and functional sub-components, enabling processes and products to be re-engineered, optimised, recombined in different ways, managed, and executed more efficiently and automatically.

In essence, ‘telco disaggregation’ is a term that describes a moment in time at which telecoms technology, organisations, value chains and processes are being broken up into their component parts and re-engineered, under the impact of computerisation and its synonyms: digitisation, softwarisation, virtualisation and cloud.

This is part of a new wave of societal computerisation / digitisation, which at STL Partners we call the Coordination Age. At a high level, this can be described as ‘cross-domain computerisation’: separating out processes, services and functions from multiple areas of technology, the economy and society – and optimising, recombining and automating them (i.e. coordinating them), so that they can better deliver on social, economic and environmental needs and goals. In other words, this enables scarce resources to be used more efficiently and sustainably in pursuit of individual and social needs.

NFV has computerised the network; telco cloud native subordinates it to computing

In respect of the telecoms industry in particular, one could argue that the first wave of virtualisation (NFV and SDN), which unfolded during the 2010s, represented the computerisation and digitisation of telecoms networking. The focus of this was internal to the telecoms industry in the first instance, rather than connected to other social and technology domains and goals. It was about taking legacy, physical networking processes and functions, and redesigning and reimplementing them in software.

Then, the second wave of virtualisation (cloud-native – which is happening now) is what enables telecoms networking to play a part in the second wave of societal computerisation more broadly (the Coordination Age). This is because the different layers and elements of telecoms networks (services, network functions and infrastructure) are redefined, instantiated in software, broken up into their component parts, redistributed (logically and physically), and reassembled as a function of an increasing variety of cross-domain and cross-vertical use cases that are enabled and delivered, ultimately, by computerisation. Telecoms is disaggregated by, subordinated to, and defined and controlled by computing.

In summary, we can say that telecoms networks and operations are going through disaggregation now because this forms part of a broader societal transformation in which physical processes, functions and systems are being brought under the control of computing / IT, in pursuit of broader human, societal, economic and environmental goals.

In practice, this also means that telcos are facing increasing competition from many new types of actor, such as:

  • Computing, IT and cloud players
  • More specialist and agile networking providers
  • And vertical-market actors – delivering connectivity in support of vertical-specific, Coordination Age use cases.

 

Table of contents

  • Executive Summary
    • Three critical success factors for Coordination Age telcos
    • What capabilities will remain distinctively ‘telco’?
    • Our take on three pioneering cloud-native telcos
  • Introduction
    • The telco business is being disaggregated
    • Telco disaggregation is a by-product of computerisation
  • The disaggregated telco landscape: Where’s the value for telcos?
    • Is there anything left that is distinctively ‘telco’?
    • The ‘core’ telecoms business has evolved from delivering ubiquitous communications to enabling ubiquitous computing
    • Six telco-specific roles for telecoms remain in play
  • Radical telco disaggregation in action: AT&T, DISH and Rakuten
    • Servco, netco or infraco – or a patchwork of all three?
    • AT&T Network Cloud sell-off: Desperation or strategic acuity?
    • DISH Networks: Building the hyperscale network
    • Rakuten Mobile: Ecommerce platform turned cloud-native telco, turned telco cloud platform provider
  • Conclusion

Enter your details below to request an extract of the report

Microsoft, Affirmed and Metaswitch: What does it mean for telecoms?

What is Microsoft doing, and should telcos be worried?

Over the past two years, Microsoft and its cloud business unit Azure have intensified and deepened their involvement in the telecoms vertical. In 2020, this included the acquisition of two leading independent vendors of cloud-native network software, Affirmed Networks and Metaswitch. This move surprised many industry observers, as it represented an intensification of Microsoft’s involvement in telco networking.

In addition, in September 2020, Microsoft announced its ‘Azure for Operators’ strategy. This packages up all the elements of Microsoft’s and Azure’s infrastructure and service offerings for the telecoms industry – including those provided by Affirmed and Metaswitch – into a more comprehensive, end-to-end portfolio organised around Microsoft’s concept of a ‘carrier-grade cloud’: a cloud that is truly capable of supporting and delivering the distinct performance and reliability that telcos require from their network functions, as opposed to the mainstream cloud devoted to enterprise IT.

In this report, our discussion of Microsoft’s strategy and partnership offer to telcos is our own interpretation based on our research, including conversations with executives from Microsoft, Affirmed Networks and Metaswitch.

We examine Microsoft’s activities in the telecoms vertical in the light of three central questions:

  • What is Microsoft doing in telecoms, and what are its intentions?
  • How should telcos respond to Microsoft’s moves and those of comparable hyperscale cloud providers? Should they consume the hyperscalers’ telco cloud products, compete against the hyperscalers, or collaborate with them?
  • And what would count as success for telcos in relationship to Microsoft and the other hyperscalers? Are there any lessons to be learned from what is happening already?

Enter your details below to request an extract of the report

Microsoft’s telecom timeline

The last couple of years has seen Microsoft and Azure increasing their involvement in telecoms infrastructure and software while building partnerships with telcos around the world. This march into telecoms stepped up a level with Microsoft’s acquisition in 2020 of two independent virtual network function (VNF) vendors with a strong presence in the mobile core, among other things: Affirmed Networks and Metaswitch. Microsoft was not previously known for its strength in telco network software, and particularly the mobile domain – prompting the question: what exactly was it doing in telecoms?

The graphic below illustrates some of the key milestones in Microsoft’s steady march into telecoms.

Microsoft’s move on telecoms

Microsoft’s five partnership and service models

Microsoft Azure’s key initiatives over the past two years have been to expand its involvement in telecoms, culminating in Microsoft’s acquisition of Affirmed and Metaswitch, and the launch of the Azure for Operators portfolio.

As a result of these initiatives, we believe there are five models of partnership and service delivery that Microsoft is now proposing to operators, addressing the opportunities arising from a convergence of network, cloud and compute. Altogether, these five models are:

Five business models for partnerships

  • A classic telco-vendorrelationship (e.g. with Affirmed or Metaswitch) – helping telcos to evolve their own cloud-native network functions (CNFs), and cloud infrastructure and operations
  • The delivery and management of VNFs and CNFs as a cloud service, or ‘Network Functions-as-a-Service’ (NFaaS)
  • Enabling operators to pursue a hybrid-cloud operating model supporting the delivery of their own vertical-specific and enterprise applications and services, or Platform-as-a-Service (PaaS)
  • Rolling out Azure edge-cloud data centres into telco and enterprise edge locations to serve as a cloud delivery platform for third-party application developers providing low latency-dependent and high-bandwidth services, or ‘Network-as-a-Cloud Platform’ (NaaCP)
  • Using such Azure edge clouds – in enterprise and neutral facilities alongside telco edge locations – as the platform for full-fledged ‘net compute’ services, whether these are developed collaboratively with operators or not.

Table of Contents

  • Executive Summary
    • Microsoft wants to be a win-win partner
    • What should telcos and others do?
    • Next steps
  • Introduction
    • What is Microsoft doing, and should telcos be worried?
  • What has Microsoft done?
    • Microsoft’s telecom timeline
  • What is Microsoft’s strategy?
    • Microsoft’s five partnership and service models
    • The ‘Azure for Operators’ portfolio completes the set
    • 5G, cloud-native and net compute: Microsoft places itself at the heart of telco industry transformation
    • Cellular connectivity – particularly 5G – is pivotal
  • Telco-hyperscaler business models: What should telcos do?
    • Different hyperscalers have different telco strategies: comparison between Azure, AWS and Google Cloud
    • What should telcos do? Compete, consume or collaborate?
  • Microsoft’s ecosystem partnership model: What counts as success for telcos?
    • More important to grow the ecosystem than share of the value chain
    • Real-world examples: AT&T versus Verizon
  • Conclusion: Telcos should stay in the net compute game – and Microsoft wants be a partner
  • Appendix 1: Analysis of milestones of Microsoft’s journey into telecoms
  • Appendix 2: Opportunities and risks of different types of telco-hyperscaler partnership
  • Index

Enter your details below to request an extract of the report

Telco edge computing: How to partner with hyperscalers

Edge computing is getting real

Hyperscalers such as Amazon, Microsoft and Google are rapidly increasing their presence in the edge computing market by launching dedicated products, establishing partnerships with telcos on 5G edge infrastructure and embedding their platforms into operators’ infrastructure.

Many telecoms operators, who need cloud infrastructure and platform support to run their edge services, have welcomed the partnership opportunity. However, they are yet to develop clear strategies on how to use these partnerships to establish a stronger proposition in the edge market, move up the value chain and play a role beyond hosting infrastructure and delivering connectivity. Operators that miss out on the partnership opportunity or fail to fully utilise it to develop and differentiate their capabilities and resources could risk either being reduced to connectivity providers with a limited role in the edge market and/or being late to the game.

Edge computing or multi-access edge computing (MEC) enables processing data closer to the end user or device (i.e. the source of data), on physical compute infrastructure that is positioned on the spectrum between the device and the internet or hyperscale cloud.

Telco edge computing is mainly defined as a distributed compute managed by a telco operator. This includes running workloads on customer premises as well as locations within the operator network. One of the reasons for caching and processing data closer to the customer data centres is that it allows both the operators and their customers to enjoy the benefit of reduced backhaul traffic and costs. Depending on where the computing resources reside, edge computing can be broadly divided into:

  • Network edge which includes sites or points of presence (PoPs) owned by a telecoms operator such as base stations, central offices and other aggregation points on the access and/or core network.
  • On-premise edge where the computing resources reside at the customer side, e.g. in a gateway on-site, an on-premises data centre, etc. As a result, customers retain their sensitive data on-premise and enjoy other flexibility and elasticity benefits brought by edge computing.

Our overview on edge computing definitions, network structure, market opportunities and business models can be found in our previous report Telco Edge Computing: What’s the operator strategy?

The edge computing opportunity for operators and hyperscalers

Many operators are looking at edge computing as a good opportunity to leverage their existing assets and resources to innovate and move up the value chain. They aim to expand their services and revenue beyond connectivity and enter the platform and application space. By deploying computing resources at the network edge, operators can offer infrastructure-as-a-service and alternative application and solutions for enterprises. Also, edge computing as a distributed compute structure and an extension of the cloud supports the operators’ own journey into virtualising the network and running internal operations more efficiently.

Cloud hyperscalers, especially the biggest three – Amazon Web Services (AWS), Microsoft Azure and Google – are at the forefront of the edge computing market. In the recent few years, they have made efforts to spread their influence outside of their public clouds and have moved the data acquisition point closer to physical devices. These include efforts in integrating their stack into IoT devices and network gateways as well as supporting private and hybrid cloud deployments. Recently, hyperscalers took another step to get closer to customers at the edge by launching platforms dedicated to telecom networks and enabling integration with 5G networks. The latest of these products include Wavelength from AWS, Azure Edge Zones from Microsoft and Anthos for Telecom from Google Cloud. Details on these products are available in section.

Enter your details below to request an extract of the report

From competition to coopetition

Both hyperscalers and telcos are among the top contenders to lead the edge market. However, each stakeholder lacks a significant piece of the stack which the other has. This is the cloud platform for operators and the physical locations for hyperscalers. Initially, operators and hyperscalers were seen as competitors racing to enter the market through different approaches. This has resulted in the emergence of new types of stakeholders including independent mini data centre providers such as Vapor IO and EdgeConnex, and platform start-ups such as MobiledgeX and Ori Industries.

However, operators acknowledge that even if they do own the edge clouds, these still need to be supported by hyperscaler clouds to create a distributed cloud. To fuel the edge market and build its momentum, operators will, in the most part, work with the cloud providers. Partnerships between operators and hyperscalers are starting to take place and shape the market, impacting edge computing short- and long-term strategies for operators as well as hyperscalers and other players in the market.

Figure 1: Major telco-hyperscalers edge partnerships

Major telco-hyperscaler partnerships

Source: STL Partners analysis

What does it mean for telcos?

Going to market alone is not an attractive option for either operators or hyperscalers at the moment, given the high investment requirement without a guaranteed return. The partnerships between two of the biggest forces in the market will provide the necessary push for the use cases to be developed and enterprise adoption to be accelerated. However, as markets grow and change, so do the stakeholders’ strategies and relationships between them.

Since the emergence of cloud computing and the development of the digital technologies market, operators have been faced with tough competition from the internet players, including hyperscalers who have managed to remain agile while building a sustained appetite for innovation and market disruption. Edge computing is not an exception and they are moving rapidly to define and own the biggest share of the edge market.

Telcos that fail to develop a strategic approach to the edge could risk losing their share of the growing market as non-telco first movers continue to develop the technology and dictate the market dynamics. This report looks into what telcos should consider regarding their edge strategies and what roles they can play in the market while partnering with hyperscalers in edge computing.

Table of contents

  • Executive Summary
    • Operators’ roles along the edge computing value chain
    • Building a bigger ecosystem and pushing market adoption
    • How partnerships can shape the market
    • What next?
  • Introduction
    • The edge computing opportunity for operators and hyperscalers
    • From competition to coopetition
    • What does it mean for telcos?
  • Overview of the telco-hyperscalers partnerships
    • Explaining the major roles required to enable edge services
    • The hyperscaler-telco edge commercial model
  • Hyperscalers’ edge strategies
    • Overview of hyperscalers’ solutions and activities at the edge
    • Hyperscalers approach to edge sites and infrastructure acquisition
  • Operators’ edge strategies and their roles in the partnerships
    • Examples of operators’ edge computing activities
    • Telcos’ approach to integrating edge platforms
  • Conclusion
    • Infrastructure strategy
    • Platform strategy
    • Verticals and ecosystem building strategy

 

Enter your details below to request an extract of the report

Edge computing: Five viable telco business models

If you don’t subscribe to our research yet, you can download the free report as part of our sample report series.

This report has been produced independently by STL Partners, in co-operation with Hewlett Packard Enterprise and Intel.

Introduction

The idea behind Multi-Access Edge Computing (MEC) is to make compute and storage capabilities available to customers at the edge of communications networks. This will mean that workloads and applications are closer to customers, potentially enhancing experiences and enabling new services and offers. As we have discussed in our recent report, there is much excitement within telcos around this concept:

  • MEC promises to enable a plethora of vertical and horizontal use cases (e.g. leveraging lowlatency) implying significant commercial opportunities. This is critical as the whole industry is trying to uncover new sources of revenue, ideally where operators may be able to build a sustainable advantage.
  • MEC should also theoretically fit with telcos’ 5G and SDN/NFV deployments, which will run certain virtualised network functions in a distributed way, including at the edge of networks. In turn, MEC potentially benefits from the capabilities of a virtualised network to extract the full potential of distributed computing.

Figure 1: Defining MEC

Source: STL Partners

However, despite the excitement around the potentially transformative impact of MEC on telcos,viable commercial models that leverage MEC are still unclear and undefined. As an added complication, a diverse ecosystem around edge computing is emerging – of which telcos’ MEC is only one part.

From this, the following key questions emerge:

  • Which business models will allow telcos to realise the various potential MEC use cases in a commercially viable way?
  • What are the right MEC business models for which telco?
  • What is needed for success? What are the challenges?

Contents:

  • Preface
  • Introduction
  • The emerging edge computing ecosystem
  • Telcos’ MEC opportunity
  • Hyperscale cloud providers are an added complication for telcos
  • How should telcos position themselves?
  • 5 telco business models for MEC
  • Business model 1: Dedicated edge hosting
  • Business model 2: Edge IaaS/PaaS/NaaS
  • Business model 3: Systems integration
  • Business model 4: B2B2X solutions
  • Business model 5: End-to-end consumer retail applications
  • Mapping use cases to business models
  • Some business models will require a long-term view on the investment
  • Which business models are right for which operator and which operator division?
  • Conclusion

Figures:

  • Figure 1: Defining MEC
  • Figure 2: MEC potential benefits
  • Figure 3: Microsoft’s new mantra – “Intelligent Cloud, Intelligent Edge”
  • Figure 4: STL Partners has identified 5 telco business models for MEC
  • Figure 5: The dedicated edge hosting value
  • Figure 6: Quantified example – Dedicated edge hosting
  • Figure 7: The Edge IaaS/PaaS/NaaS value chain
  • Figure 8: Quantified example – Edge IaaS/PaaS/NaaS
  • Figure 9: The SI value chain
  • Figure 10: Quantified example – Systems integration
  • Figure 11: The B2B2X solutions value chain
  • Figure 12: Quantified example – B2B2x solutions
  • Figure 13: Graphical representation of the end-to-end consumer retail applications business model
  • Figure 14: Quantified example – End-to-end consumer retail applications
  • Figure 15: Mapping MEC business models to possible use cases
  • Figure 16: High IRR correlates with low terminal value
  • Figure 17: Telcos need patience for edge-enabled consumer applications to become profitable (breakeven only in year 5)
  • Figure 18: The characteristics and skills required of the MEC operator depend on the business models