Telco Cloud Deployment Tracker: Deploying NFs on public cloud without losing control

In this update, we present a review of telco cloud deployments for the whole of 2022 and discuss trends that will shape the year ahead. Fewer deployments than expected were completed in 2022. The main reason for this was a delay in previously announced 5G Standalone (SA) core roll-outs, for reasons we have analysed in a previous report. However, we expect these deployments to be largely completed in 2023. 

We also review deployments of NFs on the public cloud in 2022. While few in number, they are significant in scope, and illustrate ways in which telcos of different types can deploy NFs on public cloud while retaining control over the management and ongoing development of those NFs.

Enter your details below to download an extract of the report

CNFs on the public cloud: Recent deployments illustrate how to avoid hyperscaler lock-in

Few telcos have yet deployed critical network functions on the hyperscale cloud, as discussed in this report. However, significant new deployments did go live in 2022, as did tests and pilots, involving all three hyperscalers:​

Recent deployments and trials of CNFs on public cloud

Source: STL Partners

In our recently published Telco Cloud Manifesto 2.0, we argued that telcos thinking of outsourcing telco cloud (i.e. both VNFs/CNFs and cloud infrastructure) to hyperscalers should not do so as a simple alternative to evolving their own software development skills and cloud operational processes. In order to avoid a potentially crippling dependency on their hyperscaler partners, it is essential for operators to maintain control over the development and orchestration of their critical NFs and cloud infrastructure while delivering services across a combination of the private cloud and potentially multiple public clouds. In contrast to a simple outsourcing model, the deployments on public cloud in 2022 reflect different modes of exploiting the resources and potential of the cloud while maintaining control over NF development and potential MEC use cases. The telcos involved retain control because only specific parts of the cloud stack are handed over to the hyperscale platform; and, within that, the telcos also retain control over variable elements such as orchestration, NF development, physical infrastructure or the virtualisation layer.

In this report, we discuss the models which the telcos above have followed to migrate their network workloads onto the public cloud and how this move fits their overall virtualisation strategies.

Previous telco cloud tracker releases and related research

Enter your details below to download an extract of the report

Capturing the 5G SA opportunity: towards a multi-vendor approach

The 5G SA opportunity

5G SA is an exciting prospect for telecoms operators. With many operators’ revenues from traditional connectivity beginning to stagnate, or even decline, there is increased pressure for operators to create differentiation and offer new services, including by expanding across the value chain from connectivity-only providers.

STL Partners has described this new era, whereby operators must shift their business models to adapt to the new demands, as the Coordination Age 2. From the 1850s until around 1990, the Communications Age enabled people to communicate over long distances via telephony. Next came the Information Age, in which people could directly access content and applications, increasingly provided by non-telecommunications players. In the Coordination Age, ‘things’ are increasingly connecting to other ‘things’, leading to an exponential increase in volumes of data, but thanks to advanced analytics and artificial intelligence (AI) we can also address some of the most pressing issues facing the world today: ensuring resource efficiency and improving productivity to help us to do more with less.

Operators need to define their role in the emerging coordination age


Source: STL Partners

Transitioning to the Coordination Age requires operators to shift their goals and business models accordingly. Operators will need to offer or enable tightly coupled network services and applications to different industries, and continue to refresh, optimise and scale at an unprecedented rate.

Enter your details below to download an extract of the report

The transformative potential of 5G SA

5G SA, in comparison to its NSA counterpart, is the evolution of 5G that can deliver on the promises associated with the next generation of cellular networking. 5G SA is intended to be cloud native and adopt cloud-native principles. Without SA, 5G networks are less able to quickly launch new services, enable new use cases, or introduce more scalable, automated operating models.

The opportunities to which 5G SA is expected to give rise have been explored extensively in previous STL research. The ‘full potential’ of 5G SA includes promises around higher throughput, greater capacity, the ability to leverage enhanced mobile broadband (eMBB), ultra-reliable low latency communications (URLLC), and massive machine type communications (mMTC). In summary; do more (including enabling more connections at any given time), faster (down to a latency of a few milliseconds) and at a lower cost (through a variety of actors, including lower power consumption than 4G). These new capabilities are exciting for operators: enabling operators to develop powerful new applications for their customers with truly differentiated use cases.

One particular opportunity that 5G SA represents is network slicing. Slicing can be defined as ‘a mechanism to create and dynamically manage functionally discrete, virtualised networks over a common infrastructure,’ and has been the subject of several STL reports. The increased flexibility and agility of network slicing can enable operators to provide unique policies and differentiated services to their enterprise customers and recoup the substantial investments that rolling out 5G SA requires. However, the benefits and opportunities of 5G SA have implications far beyond the new services it can enable. For the first time, 5G is cloud-native by design, with modular service-based architecture giving
rise to greater flexibility and programmability. Furthermore, it leverages IT concepts of virtualization, cloudification, and DevOps processes. This does not so much enable as actively encourage a more agile operating model. Some of the exciting features of 5G SA include:

  • Automation – Increased automation throughout the network, including deployment, orchestration, assurance, and optimisation can give rise to “zero touch” networks that do not require human intervention, and can self repair and update autonomously on an ongoing basis. The aim of network automation is to reduce human error and the time taken to resolve issues through closed-loop network assurance.
  • Disaggregation – Relies on an open standard network operating system whereby different functional components of networking equipment can be deployed individually and then combined in a modular, fit for purpose way, to suit the requirements of an operator’s network. This architecture relies on the interworking between the multi-vendor components within the 5G core. Disaggregation can allow vendors to offer best in class capabilities for each individual component, providing operators with unprecedented choice and customizability.
  • Avoiding vendor lock-in through a diversified supply base – One of the key benefits of a disaggregated approach to the 5G core is to break vendor lock-in that has tended to dominate legacy approaches. Vendor lock-in can be a key limitation on the speed of innovation and service deployment.
  • Agility – Adopting a continuous improvement and development means accelerated innovation and speed of deployment. A software-orientated infrastructure can enable changes in business processes such as product development management to happen at a greater pace and speed time to market for new revenue generating products and features.
  • Scalability through adopting ‘hyperscale economics’ – Explored by STL Partners in previous research, this term describes the emulation of business and software practices developed by hyperscalers to deliver service innovation at scale whilst simultaneously reducing the level of capex relative to revenue.

Cloud native is the only way to truly unlock the benefits of 5G thanks to the automation, efficiency,
optimisation and mode of delivery that it enables. Ultimately, it allows operators to maximise the
opportunity of 5G to develop differentiated services to consumer and enterprises customers.

 

Table of Contents:

  • Executive Summary
    • Recommendations
  • Preface
  • The 5G SA opportunity
    • The transformative potential of 5G SA
    • 5G SA requires operators to develop and foster a new set of skills
    • Some open questions remain around 5G SA
  • The early adopter 5G SA landscape
    • Orange
    • Vodafone
    • Dish
  • Tier 2 and Tier 3 operator approaches to 5G SA
    • Adherents to a single vendor approach
    • Proponents of a multi-vendor approach
    • Several factors can influence an operators’ vendor strategy
  • Recommendations

Related research

Enter your details below to download an extract of the report

5G standalone (SA) core: Why and how telcos should keep going

Major 5G Standalone deployments are experiencing delays…

There is a widespread opinion among telco industry watchers that deployments of the 5G Standalone (SA) core are taking longer than originally expected. It is certainly the case that some of the world’s leading operators, and telco cloud innovators, are taking their time over these deployments, as illustrated below:

  • AT&T: Has no current, publicly announced deadline for launching its 5G SA core, which was originally expected to be deployed in mid-2021.
  • Deutsche Telekom: Launched an SA core in Germany on a trial basis in September 2022, having previously acknowledged that SA was taking longer than originally expected. In Europe, the only other opco that is advancing towards commercial deployment is Magenta Telekom in Austria. In 2021, the company cited various delay factors, such as 5G SA not being technically mature enough to fulfil customers’ expectations (on speed and latency), and a lack of consumer devices supporting 5G SA.
  • Rakuten Mobile: Was expected to launch an SA core co-developed with NEC in 2021. But at the time of writing, this had still not launched.
  • SK Telecom: Was originally expected to launch a Samsung-provided SA core in 2020. However, in November 2021, it was announced that SK Telecom would deploy an Ericsson converged Non-standalone (NSA) / SA core. By the time of writing, this had still not taken place.
  • Telefónica: Has carried out extensive tests and pilots of 5G SA to support different use cases but has no publicly announced timetable for launching the technology commercially.
  • Verizon: Originally planned to launch its SA core at the end of 2021. But this was pushed back to 2022; and recent pronouncements by the company indicate a launch of commercial services over the SA core only in 2023.
  • Vodafone: Has launched SA in Germany only, not in any of its other markets; and even then, nationwide SA coverage is not expected until 2025. An SA core is, however, expected to be launched in Portugal in the near future, although no definite deadline has been announced. A ‘commercial pilot’ in three UK cities, launched in June 2021, had still not resulted in a full commercial deployment by the time of writing.

…but other MNOs are making rapid progress

In contrast to the above catalogue of delay, several other leading operators have made considerable progress with their standalone deployments:

  • DISH: Launched its SA core- and open RAN-based network in the US, operated entirely over the AWS cloud, in May 2022. The initial population coverage of the network was required to be 20%. This is supposed to rise to 70% by June 2023.
  • Orange: Proceeding with a Europe-wide roll-out, with six markets expected to go live with SA cores in 2023.
  • Saudi Telecom Company (STC): Has launched SA services in two international markets, Kuwait (May 2021) and Bahrain (May 2022). Preparations for a launch in Saudi Arabia were ongoing at the time of writing.
  • Telekom Austria Group (A1): Rolling out SA cores across four markets in Central Europe (Bulgaria, Croatia, Serbia and Slovenia), although no announcement has been made regarding a similar deployment in its home market of Austria. In June 2022, A1 also carried out a PoC of end-to-end, SA core-enabled network slicing, in partnership with Amdocs.
  • T-Mobile US: Has reportedly migrated all of its mobile broadband traffic over to its SA core, which was launched back in 2020. It also launched one of the world’s first voice-over-New Radio (VoNR) services, run over the SA core, in parts of two cities in June 2022.
  • Zain (Kuwait): Launched SA in Saudi Arabia in February 2022, while a deployment in its home market was ongoing at the time of writing.
  • There are also a number of trials, and prospective and actual deployments, of SA cores over the public cloud in Europe. These are serving the macro network, not edge or private-networking use cases. The most notable examples include Magenta Telekom (Deutsche Telekom’s Austrian subsidiary, partnering with Google Cloud); Swisscom (partnering with AWS); and Working Group Two (wgtwo) – a Cisco and Telenor spin-off – that offers a multi-tenant, cloud-native 5G core delivered to third-party MNOs and MVNOs via the AWS cloud.
  • The three established Chinese MNOs are all making rapid progress with their 5G SA roll-outs, having launched in either 2020 (China Telecom and China Unicom) or 2021 (China Mobile). The country’s newly launched, fourth national player, Broadnet, is also rolling out SA. However, it is not publicly known what share of the country’s reported 848 million-odd 5G subscribers (at March 2022) were connected to SA cores.
  • At least eight other APAC operators had launched 5G SA-based services by July 2022, including KT in South Korea, NTT Docomo and SoftBank in Japan and Smart in the Philippines.

Enter your details below to request an extract of the report

Many standalone deployments in the offing – but few fixed deadlines

So, 5G standalone deployments are definitely a mixed bag: leading operators in APAC, Europe, the Middle East and North America are deploying and have launched at scale, while other leading players in the same regions have delayed launches, including some of the telcos that have helped drive telco cloud as a whole over the past few years, e.g. AT&T, Deutsche Telekom, Rakuten, Telefónica and Vodafone.

In the July 2022 update to our Telco Cloud Deployment Tracker, which contained a ‘deep dive’ on 5G core roll-outs, we presented an optimistic picture of 5G SA deployments. We pointed out that the number of SA and converged NSA / SA cores. We expect to be launched in 2022 outnumbered the total of NSA deployments. However, as illustrated in the figure below, SA and converged NSA/SA cores are still the minority of all 5G cores (29% in total).

We should also point out that some of the SA and converged NSA / SA deployments shown in the figure below are still in progress and some will continue to be so in 2023. In other words, the launch of these core networks has been announced and we have therefore logged them in our tracker, but we expect that the corresponding deployments will be completed in the remainder of 2022 or in 2023, based on a reasonable, typical gap between when the deployments are publicly announced and the time it normally takes to complete them. If, however, more of these predicted deployments are delayed as per the roll-outs of some of leading players listed above, then we will need to revise down our 2022 and 2023 totals.

Global 5G core networks by type, 2018 to 2023

 

Source: STL Partners

Table of contents

  • Executive Summary
  • Introduction
    • Major 5G Standalone deployments are experiencing delays
    • …but other MNOs are making rapid progress
    • Many SA deployments in the offing – but few fixed deadlines
  • What is holding up deployments?
    • Mass-market use cases are not yet mature
    • Enterprise use cases exploiting an SA core are not established
    • Business model and ROI uncertainty for 5G SA
    • Uncertainty about the role of hyperscalers
    • Coordination of investments in 5G SA with those in open RAN
    • MNO process and organisation must evolve to exploit 5G SA
  • 5G SA progress will unlock opportunities
    • Build out coverage to improve ‘commodity’ services
    • Be first to roll out 5G SA in the national market
    • For brownfield deployments, incrementally evolve towards SA
    • Greenfield deployments
    • Carefully elaborate deployment models on hyperscale cloud
    • Work through process and organisational change
  • Conclusion: 5G SA will enable transformation

    Related research

    Previous STL Partners reports aligned to this topic include:

  • Telco Cloud Deployment Tracker: 5G core deep dive
  • Telco cloud: short-term pain, long-term gain
  • Telco Cloud Deployment Tracker: 5G standalone and RAN

Enter your details below to request an extract of the report

Building a green network: Sustainability game changers

Carbon emissions: At the heart of the corporate strategy for SPs

At the core of all service provider businesses is their network. Customers expect from these networks a service which is fast, reliable, customisable and cost-effective. For service providers to continue to meet these expectations, they are investing in new technologies that help to improve their performance. This investment includes but is not limited to 5G (SA) core, cloudification, AI and automation capabilities, edge computing, vRAN and O-RAN, fibre to the home and more.

However, at the same time as making these network advancements, service providers are also focused on reducing their carbon emissions. Never before has this been such an important part of the corporate strategy of many large companies, not the least the service providers. Becoming greener has become a top priority politically, economically and socially and is increasingly encompassing all parts of the business, from reducing the use of electricity to trying to increase the amount of recycled and refurbished equipment in use.

In many instances efforts to become more sustainable have been accelerated because of the wave of commitments from service providers to become net-zero companies in the next 10-30 years.1 Achieving these commitments will require changes in operating practices across service providers’ businesses, but particularly, changes in the way that they rollout, operate, manage, maintain and upgrade their networks.

Enter your details below to request an extract of the report

The single biggest contributor: Green networks

Figure 1 indicates why the networks are such an important element in reducing carbon emissions – because they are by far the most energy-hungry part of a service providers’ business. Last year, the Belgian service provider Proximus reported than more than 75% of their electricity consumption came from their networks.

More than 75% of Proximus’ electricity consumption last year came from its fixed and mobile networks

Green networks - Proximus electricity consumption emissions carbon

There are technological advancements that are both improving network performance and helping to reduce carbon emissions. One such of these is “Moore’s Law” – the observed phenomenon from the co-founder of Intel that while compute speed and power doubles every two years, the cost of the computers is halved. Making smaller, more powerful equipment helps to reduce the embedded carbon of a network and while we expect generally that this trend will continue, it will not be enough alone for service providers to reach their net-zero goals.

Instead, more radical action must be taken. Service providers must accelerate their efforts to prioritise sustainability just as much as performance when it comes to their networks and data centre infrastructure. In this report we discuss five key steps that could be sustainability gamechangers in building green networks. The insights from the report have largely been formed through an interview programme with service providers globally to understand their current efforts and future ambitions.

Table of Contents

  • Executive Summary
    • Five sustainability gamechangers to build a greener network
  • Introduction
    • Carbon emissions: At the heart of the corporate strategy for SPs
    • The single biggest contributor: Why the focus on green networks
  • Re-evaluate the gold standard for network KPIs
    • Impact on carbon emissions
    • Evidence of adoption by service providers
  • Develop best-in-class AI and automation capabilities
    • Impact on carbon emissions
    • Evidence of adoption by service providers
  • Simplify the network to achieve emission benefits today
    • Impact on carbon emissions
    • Evidence of adoption by service providers
  • Ensure workloads are running on green energy as much as possible
    • Impact on carbon emissions
    • Evidence of adoption by service providers
  • Target a power usage effectiveness rating of 0.5 through innovative waste heat solutions
    • Impact on carbon emissions
    • Evidence of adoption by service providers
  • Conclusion

 

Enter your details below to request an extract of the report

 

Telco Cloud Deployment Tracker: 5G core deep dive

Deep dive: 5G core deployments 

In this July 2022 update to STL Partners’ Telco Cloud Deployment Tracker, we present granular information on 5G core launches. They fall into three categories:

  • 5G Non-standalone core (5G NSA core) deployments: The 5G NSA core (agreed as part of 3GPP Release in December 2017), involves using a virtualised and upgraded version of the existing 4G core (or EPC) to support 5G New Radio (NR) wireless transmission in tandem with existing LTE services. This was the first form of 5G to be launched and still accounts for 75% of all 5G core network deployments in our Tracker.
  • 5G Standalone core (5G SA core) deployments: The SA core is a completely new and 5G-only core. It has a simplified, cloud-native and distributed architecture, and is designed to support services and functions such as network slicing, Ultra-Reliable Low-Latency Communications (URLLC) and enhanced Machine-Type Communications (eMTC, i.e. massive IoT). Our Tracker indicates that the upcoming wave of 5G core deployments in 2022 and 2023 will be mostly 5G SA core.
  • Converged 5G NSA/SA core deployments: this is when a dual-mode NSA and SA platform is deployed; in most cases, the NSA core results from the upgrade of an existing LTE core (EPC) to support 5G signalling and radio. The principle behind a converged NSA/SA core is the ability to orchestrate different combinations of containerised network functions, and automatically and dynamically flip over from an NSA to an SA configuration, in tandem – for example – with other features and services such as Dynamic Spectrum Sharing and the needs of different network slices. For this reason, launching a converged NSA/SA platform is a marker of a more cloud-native approach in comparison with a simple 5G NSA launch. Ericsson is the most commonly found vendor for this type of platform with a handful coming from Huawei, Samsung and WorkingGroupTwo. Albeit interesting, converged 5G NSA/SA core deployments remain a minority (7% of all 5G core deployments over the 2018-2023 period) and most of our commentary will therefore focus on 5G NSA and 5G SA core launches.

Enter your details below to request an extract of the report

75% of 5G cores are still Non-standalone (NSA)

Global 5G core deployments by type, 2018–23

  • There is renewed activity this year in 5G core launches since the total number of 5G core deployments so far in 2022 (effective and in progress) stands at 49, above the 47 logged in the whole of 2021. At the very least, total 5G deployments in 2022 will settle between the level of 2021 and the peak of 2020 (97).
  • 5G in whichever form now exists in most places where it was both in demand and affordable; but there remain large economies where it is yet to be launched: Turkey, Russia and most notably India. It also remains to be launched in most of Africa.
  • In countries with 5G, the next phase of launches, which will see the migration of NSA to SA cores, has yet to take place on a significant scale.
  • To date, 75% of all 5G cores are NSA. However, 5G SA will outstrip NSA in terms of deployments in 2022 and represent 24 of the 49 launches this year, or 34 if one includes converged NSA/SA cores as part of the total.
  • All but one of the 5G launches announced for 2023 are standalone; they all involve Tier-1 MNOs including Orange (in its European footprint involving Ericsson and Nokia), NTT Docomo in Japan and Verizon in the US.

The upcoming wave of SA core (and open / vRAN) represents an evolution towards cloud-native

  • Cloud-native functions or CNFs are software designed from the ground up for deployment and operation in the cloud with:​
  • Portability across any hardware infrastructure or virtualisation platform​
  • Modularity and openness, with components from multiple vendors able to be flexibly swapped in and out based on a shared set of compute and OS resources, and open APIs (in particular, via software ‘containers’)​
  • Automated orchestration and lifecycle management, with individual micro-services (software sub-components) able to be independently modified / upgraded, and automatically re-orchestrated and service-chained based on a persistent, API-based, ‘declarative’ framework (one which states the desired outcome, with the service chain organising itself to deliver the outcome in the most efficient way)​
  • Compute, resource, and software efficiency: as a concomitant of the automated, lean and logically optimal characteristics described above, CNFs are more efficient (both functionally and in terms of operating costs) and consume fewer compute and energy resources.​
  • Scalability and flexibility, as individual functions (for example, distributed user plane functions in 5G networks) can be scaled up or down instantly and dynamically in response to overall traffic flows or the needs of individual services​
  • Programmability, as network functions are now entirely based on software components that can be programmed and combined in a highly flexible manner in accordance with the needs of individual services and use contexts, via open APIs.​

Previous telco cloud tracker releases and related research

Each new release of the tracker is global, but is accompanied by an analytical report which focusses on trends in given regions from time to time:

Enter your details below to request an extract of the report