Telco digital twins: Cool tech or real value?

Definition of a digital twin

Digital twin is a familiar term with a well-known definition in industrial settings. However, in a telco setting it is useful to define what it is and how it differs from a standard piece of modelling. This research discusses the definition of a digital twin and concludes with a detailed taxonomy.

An archetypical digital twin:

  • models a single entity/system (for example, a cell site).
  • creates a digital representation of this entity/system, which can be either a physical object, process, organisation, person or abstraction (details of the cell-site topology or the part numbers of components that make up the site).
  • has exactly one twin per thing (each cell site can be modelled separately).
  • updates (either continuously, intermittently or as needed) to mirror the current state of this thing. For example, the cell sitescurrent performance given customer behavior.

In addition:

  • multiple digital twins can be aggregated to form a composite view (the impact of network changes on cell sitesin an area).
  • the data coming into the digital twin can drive various types of analytics (typically digital simulations and models) within the twin itself – or could transit from one or multiple digital twins to a third-party application (for example, capacity management analytics).
  • the resulting analysis has a range of immediate uses, such as feeding into downstream actuators, or it can be stored for future use, for instance mimicking scenarios for testingwithout affecting any live applications.
  • a digital twin is directly linked to the original, which means it can enable a two-way interaction. Not only can a twin allow others to read its own data, but it can transmit questions or commands back to the original asset.

Enter your details below to download an extract of the report

What is the purpose of a digital twin?

This research uses the phrase “archetypical twin” to describe the most mature twin category, which can be found in manufacturing, operations, construction, maintenance and operating environments. These have been around in different levels of sophistication for the last 10 years or so and are expected to be widely available and mature in the next five years. Their main purpose is to act as a proxy for an asset, so that applications wanting data about the asset can connect directly to the digital twin rather than having to connect directly with the asset. In these environments, digital twins tend to be deployed for expensive and complex equipment which needs to operate efficiently and without significant down time. For example, jet engines or other complex equipment. In the telco, the most immediate use case for an archetypical twin is to model the cell tower and associated Radio Access Network (RAN) electronics and supporting equipment.

The adoption of digital twins should be seen as an evolution from today’s AI models

digital-twins-evolution-of-todays-ai-models-stl-partners

*See report for detailed graphic.

Source: STL Partners

 

At the other end of the maturity curve from the archetypical twin, is the “digital twin of the organisation” (DTO). This is a virtual model of a department, business unit, organisation or whole enterprise that management can use to support specific financial or other decision-making processes. It uses the same design pattern and thinking of a twin of a physical object but brings in a variety of operational or contextual data to model a “non-physical” thing. In interviews for this research, the consensus was that these were not an initial priority for telcos and, indeed, conceptually it was not totally clear whether the benefits make them a must-have for telcos in the mid-term either.

As the telecoms industry is still in the exploratory and trial phase with digital twins, there are a series of initial deployments which, when looked at, raise a somewhat semantic question about whether a digital representation of an asset (for example, a network function) or a system (for example, a core network) is really a digital twin or actually just an organic development of AI models that have been used in telcos for some time. Referring to this as the “digital twin/model” continuum, the graphic above shows the characteristics of an archetypical twin compared to that of a typical model.

The most important takeaway from this graphic are the factors on the right-hand side that make a digital twin potentially much more complex and resource hungry than a model. How important it is to distinguish an archetypical twin from a hybrid digital twin/model may come down to “marketing creep”, where deployments tend to get described as digital twins whether they exhibit many of the features of the archtypical twin or not. This creep will be exacerbated by telcos’ needs, which are not primarily focused on emulating physical assets such as engines or robots but on monitoring complex processes (for example, networks), which have individual assets (for example, network functions, physical equipment) that may not need as much detailed monitoring as individual components in an airplane engine. As a result, the telecoms industry could deploy digital twin/models far more extensively than full digital twins.

Table of contents

  • Executive Summary
    • Choosing where to start
    • Complexity: The biggest short-term barrier
    • Building an early-days digital twin portfolio
  • Introduction
    • Definition of a digital twin
    • What is the purpose of a digital twin?
    • A digital twin taxonomy
  • Planning a digital twin deployment
    • Network testing
    • Radio and network planning
    • Cell site management
    • KPIs for network management
    • Fraud prediction
    • Product catalogue
    • Digital twins within partner ecosystems
    • Digital twins of services
    • Data for customer digital twins
    • Customer experience messaging
    • Vertical-specific digital twins
  • Drivers and barriers to uptake of digital twins
    • Drivers
    • Barriers
  • Conclusion: Creating a digital twin strategy
    • Immediate strategy for day 1 deployment
    • Long-term strategy

Related research

Enter your details below to download an extract of the report

Telco Cloud Deployment Tracker: Deploying NFs on public cloud without losing control

In this update, we present a review of telco cloud deployments for the whole of 2022 and discuss trends that will shape the year ahead. Fewer deployments than expected were completed in 2022. The main reason for this was a delay in previously announced 5G Standalone (SA) core roll-outs, for reasons we have analysed in a previous report. However, we expect these deployments to be largely completed in 2023. 

We also review deployments of NFs on the public cloud in 2022. While few in number, they are significant in scope, and illustrate ways in which telcos of different types can deploy NFs on public cloud while retaining control over the management and ongoing development of those NFs.

Enter your details below to download an extract of the report

CNFs on the public cloud: Recent deployments illustrate how to avoid hyperscaler lock-in

Few telcos have yet deployed critical network functions on the hyperscale cloud, as discussed in this report. However, significant new deployments did go live in 2022, as did tests and pilots, involving all three hyperscalers:​

Recent deployments and trials of CNFs on public cloud

Source: STL Partners

In our recently published Telco Cloud Manifesto 2.0, we argued that telcos thinking of outsourcing telco cloud (i.e. both VNFs/CNFs and cloud infrastructure) to hyperscalers should not do so as a simple alternative to evolving their own software development skills and cloud operational processes. In order to avoid a potentially crippling dependency on their hyperscaler partners, it is essential for operators to maintain control over the development and orchestration of their critical NFs and cloud infrastructure while delivering services across a combination of the private cloud and potentially multiple public clouds. In contrast to a simple outsourcing model, the deployments on public cloud in 2022 reflect different modes of exploiting the resources and potential of the cloud while maintaining control over NF development and potential MEC use cases. The telcos involved retain control because only specific parts of the cloud stack are handed over to the hyperscale platform; and, within that, the telcos also retain control over variable elements such as orchestration, NF development, physical infrastructure or the virtualisation layer.

In this report, we discuss the models which the telcos above have followed to migrate their network workloads onto the public cloud and how this move fits their overall virtualisation strategies.

Previous telco cloud tracker releases and related research

Enter your details below to download an extract of the report

Fibre for 5G and edge: Who does it and how to build it?

Opportunities for fibre network operators

4G/5G densification and the growth in edge end points will place fresh demands on telecoms network infrastructure to deliver high bandwidth connections to new locations. Many of these will be sites on the streets of urban centres without existing connections, where installation of new fibre cables is costly. This will require careful planning and optimum selection of existing infrastructure to minimise costs and strengthen the business cases for fibre deployment.

While much of the growth in deployment of small cells and edge end points will be on private sites, their deployment in public areas, in support of public network services, will pose specific challenges to providing the broad bandwidth connectivity required. This includes both backhaul from cell sites and edge end points to the fibre transport network, plus any fronthaul needs for new open RAN deployments, from baseband equipment to radio units and antennas. In almost all cases this will entail installing new fibre in areas where laying a new duct is at its most expensive, although in a few cases fixed point-to-point radio links could be deployed instead.

Enter your details below to request an extract of the report

Global deployments of small cells and non-telco edge end points
in public areas

Source: Small Cell Forum, STL research and analysis

In addition, operators of 5G small cells and public cloud edge sites will require access to fibre links for backhaul to their core networks to provide the high bandwidths required. In some cases, they may need multiple fibres, especially if diverse paths are needed for security and resilience purposes.

Many newer networks have been built for a specific purpose, such as residential or business FTTP. Others are trunk routes to connect large businesses and data centres, and may serve local, regional, national or international areas. In addition, changing regulations have encouraged the creation of new businesses such as neutral hosts (also called “open access” for wholesale fibre) and, as a result, the supply side of the market is composed of an increasing variety of players. If this pattern were to continue, then it would very likely prove uneconomic to build dedicated networks for some applications, such as small cell densification or some standalone edge applications.

However, provided build qualities meet the required standard and costs can be contained there is no reason why networks deployed to address one market cannot be extended and repurposed to serve others. For new fibre builds being planned, it is also important to consider these new FTTX opportunities upfront and in some detail, rather than as an afterthought or just a throw-away bullet point on investor slide-decks.  

This report looks at the opportunities these developments offer to fibre network operators and considers the business cases that need to be made. It looks at the means and scope for minimising costs necessary to profitably satisfy the widest range of needs.

The fibre market is changing

FTTH/P has been largely satisfied in many countries, and even in slower markets such as the UK and Germany, the bulk of the network is expected to be in place by 2025/6 for most urban premises, at least on the basis of “homes passed”, if not actually connected.

By contrast the requirement of higher bandwidth connectivity for mobile base stations being upgraded from 3G to 4G and 5G is current and ongoing. Demand for links to small cells needed to support 5G densification, standalone edge, and smart city applications is only just beginning to appear and is likely to develop significantly over the next 10 years or more. In future high speed broadband links will be required to support an increasing range of applications for different organisations: for example, autonomous and semi-autonomous vehicle (V2X) applications operated by government or city authorities.

Both densification and edge will need local connections for fronthaul and backhaul as well as longer connections to provide backhaul to the core network. Building from scratch is expensive owing to the high costs associated with digging in the public highway, especially in urban centres. Digging can be complex, depending on the surfaces and buried services encountered, and extensions after the initial main build can be very expensive.

Laying fibre and ducts are a long-term investment and can usually be amortised over 15 to 20 years.  Nevertheless, network operators need to be sure of a good return on their investment and therefore need to find ways to minimise costs while maximising revenues. In markets with multiple players, there will also be a desire by potential acquisition targets to underscore their valuations, by maximising their addressable market, while reducing any post-merger remedial or expansion costs. Good planning, including watching for new opportunities and trends and the smart use of existing assets to minimise costs, can help ensure this.

  • Serving multiple markets through good forecasting and planning can help maximise revenues.
  • Operators and others can make use of various infrastructure assets to reduce costs, including incumbents’ physical duct/pole infrastructure sewers, disused water and hydraulic pipes, neutral hosts’ networks, council ducts, and traffic management ducts. Obviously these will not extend everywhere that fibre is required, but can make a meaningful contribution in many situations.

The remaining sections of this report examine in more detail the specific opportunities offered to fixed network operators, by densification of mobile base stations and growth of edge computing. It covers:

  • Market demand, including drivers of demand, and end users’ and the industry’s needs and options
  • The changing supply side and regulation
  • Technologies, build options and costs
  • How to maximise revenues and returns on investment.

Table of Contents

  • Executive Summary
  • Introduction
    • The fibre market is changing
  • Small cell and edge: Demand
    • Demand for small cells
    • Demand for edge end points
  • Small cell and edge: Supply
    • The changing network supply structure
  • Build options
    • Pros and cons of seven building options
  • How do they compare on costs?
  • Impact of regulation and policy
  • How to mitigate unforeseen costs
  • The business case
  • Conclusions
  • Index

Related Research

 

Enter your details below to request an extract of the report

How video analytics can kickstart the edge opportunity for telcos

Processing video is a key use for edge computing

In our analysis and sizing of the edge market, STL Partners found that processing video will be a strong driver of edge capacity and revenues. This is because a huge quantity of visual data is captured each day through many different processes. The majority of the information captured is straightforward (such as “how busy is this road?”), therefore it is highly inefficient for the whole data stream to be sent to the core of the network. It is much better to process it near to the point of origin and save the costs, energy and time of sending it back and forth. Hence “Video Analytics” is a key use for edge computing.

Enter your details below to request an extract of the report

The edge market is evolving rapidly

Edge computing is an exciting opportunity. The market is evolving rapidly, and although still fairly nascent today, is expected to scale significantly over the next 2-3 years. STL partners has estimated that the total edge computing addressable market was worth $10bn in 2020, and that this will grow to $534bn in 2030. This is driven by the increasing number of connected devices, and the rising adoption of IoT, Industry 4.0 and digital transformation solutions. While cloud adoption continues to grow in parallel, there are cases where the increasingly stringent connectivity demands of new and advanced use cases cannot be met by cloud or central data centres, or where sending data to the cloud is too costly. Edge answers this problem, and offers an alternative option with lower latency, reduced backhaul and greater reliability. For the many enterprises who are adopting a hybrid and multi-cloud strategy – strategically distributing their data across different clouds and locations – running workloads at the edge is a natural next step.

Developments in the technologies enabling edge computing are also contributing to market growth. For example, the increased agility of virtualised and 5G networks enables the migration of workloads from the cloud to the edge. Compute is also developing, becoming more lightweight, efficient, and powerful. These more capable devices can run workloads and perform operations that were not previously possible at the edge.

Defining different types of edge

Edge computing brings processing capabilities closer to the end user or end-device. The compute infrastructure is therefore more distributed, and typically at smaller sites. This differs from traditional on-premise compute (which is monolithic or based on proprietary hardware) because it utilises the flexibility and openness of cloud native infrastructure, i.e. highly scalable Kubernetes clusters.

The location of the edge may be defined as anywhere between an end device, and a point on the periphery of the core network. We have outlined the key types of edge computing and where they are located in the figure below.

The types of edge computing

It should be noted that although moving compute to the edge can be considered an alternative to cloud, edge computing also complements cloud computing and drives adoption, since data that is processed or filtered at the edge can ultimately be sent to the cloud for longer term storage or collation and analysis.

Telcos must identify which area of the edge market to focus on

For operators looking to move beyond connectivity and offer vertical solutions, edge is an opportunity to differentiate by incorporating their edge capabilities into solutions. If successful, this could result in significant revenue generation, since the applications and platforms layer is where most of the revenue from edge resides. In fact, by 2030, 70% of the addressable revenue for edge will come from the application, with only 9% in the pure connectivity. The remaining 21% represents the value of hardware, edge infrastructure and platforms, integration, and managed services.

Realistically, operators will not have the resource and management bandwidth to develop solutions for several use cases and verticals. They must therefore focus on key customers in one or two segments, understand their particular business needs, and deliver that value in concert with specific partners in their ecosystem. As it relates to MEC, most operators are selecting the key partners for each of the services they offer – broadcast video, immersive AR/VR experiences, crowd analytics, gaming etc.

When selecting the best area to focus on, telcos should weigh up the attractiveness of the market (including the size of the opportunity, how mature the opportunity is, and the need for edge) against their ability to compete.

Value of edge use cases (by size of total addressable market by 2030)

Source: STL Partners – Edge computing market sizing forecast

We assessed the market attractiveness of the top use cases that are expected to drive adoption of edge over the coming years, some of which are shown in the figure above. This revealed that the use cases that represent the largest opportunities in 2030 include edge CDN, cloud gaming, connected car driver assistance and video analytics. Of these, video analytics is the most mature opportunity, therefore represents a highly attractive proposition for CSPs.

Table of Contents

  • Executive Summary
  • Introduction
    • Processing video is a key use for edge computing
    • The edge market is evolving rapidly
    • Defining different types of edge
    • Telcos must identify which area of the edge market to focus on
  • Video analytics is a large and growing market
    • The market for edge-enabled video analytics will be worth $75bn by 2030
  • Edge computing changes the game and plays to operator strengths
    • What is the role of 5G?
  • Security is the largest growth area and operators have skills and assets in this
    • Video analytics for security will increasingly rely on the network edge
  • There is empirical evidence from early movers that telcos can be successful in this space
    • What are telcos doing today?
    • Telcos can front end-to-end video analytics solutions
    • It is important to maintain openness
    • Conquering the video analytics opportunity will open doors for telcos
  • Conclusion
  • Index

Enter your details below to request an extract of the report

 

Telco edge platforms: Balancing speed vs value

Defining the edge

Edge computing has been hailed as key to help deliver the promises of 5G, enabling transformative use cases and experiences. Significantly for mobile service providers, deriving value from their networks and presence at the edge remains an aspiration for a new source of revenues and a more favourable position in the value chain. There is strong belief that this needs to exceed what was achieved with 3G and 4G, where OTT players built entire businesses through successful services using centralised platforms leveraging fast, ubiquitous internet access. Mobile operators remain hopeful that they can evolve from ‘dumb pipes’ and derive more value from dynamic connectivity services, value added platforms, and partnerships.

The edge means different things to different people, so it is useful to define terminology and clarify the scope of this report. We understand the edge to refer to compute, storage and networking infrastructure, facilities, software, and services which exist physically or architecturally between typically non-telco cloud data centres and end-devices. This report will focus on the ‘telco edge’ for both mobile and fixed line telecoms operators.  The term MEC (initially ETSI’s Mobile Edge Computing which evolved to Multi-access Edge Computing) has historically been used for telco edge predominantly with a focus on deployment in the access network, however as we will see its use has somewhat broadened as telcos initially deploy edge computing more centrally.

Enter your details below to request an extract of the report

The edge continuum spans between end devices and hyperscale cloud

It is common practice to define an edge continuum in a diagram such as below which shows the different edge locations between an end device and the hyperscaler cloud. Typically, the physical distance, the number of network hops, and network latency will increase the further the edge location shifts to the right.

The edge continuum

edge platform

In considering the telco edge, we will primarily be focussed on the network edge, consisting of data centres logically situated in telco’s access, transport, and core network facilities. The on-premise edge (sometimes referred to enterprise or private edge) may be offered by telcos and others to enterprises but is closely related to private 4G/5G networks and single tenant propositions which are out of scope of this report. STL has written about this in reports such as Private networks: Lessons so far and what next and Combining private 5G and edge computing: The revenue opportunity.

The network edge affords a wide range of choices to deliver edge services from within the network. Network edge also includes neutral host providers that offer facilities for multiple infrastructure providers, which support enterprise applications, as well as radio access networks. These may be offered by traditional telcos, tower infrastructure providers and others.

The regional edge sits outside telco networks at internet exchanges, carrier exchanges, interconnect points, co-location, and data centre facilities. Multiple parties can deploy infrastructure at such locations which are designed as neutral, well-connected locations for third party equipment.  For some use cases, these locations are considered as ‘close enough’ or ‘near enough’ edge sites.

Edge computing drivers and benefits vary depending on the use case

While low latency is often cited as the justification for moving application workloads from the cloud to the edge, there are other drivers such as reduced data transit, data sovereignty and improving redundancy. These factors may be just as relevant as low latency, or more so, depending on the specific use case.

Edge computing benefits

Migrating workloads from end-devices to the edge can also bring benefits such as reduced power consumption, allowing smaller form factors at lower costs, and enabling experiences that are simply not possible on existing devices due to heavy computational requirements. Processing in the cloud may have been previously dismissed due to its limitations or constraints. One consumer example would be Instagram or Snapchat real-time video filters with heavy machine learning processing requirements. The processing for these may move to the edge to improve and standardise performance across devices, by not relying on the end-device’s processing power. Partners

However, the public cloud is well established and here to stay, so it is prudent to view the edge as complementary to and an extension of the public cloud, offering characteristics which may be important for specific components of certain use cases.

Table of Contents

  • Executive Summary
    • Most telcos do not yet see demand for a fully distributed edge
    • The platform is an important piece of the edge, but the verdict is still out on which approach to take
    • Telcos need to guarantee multi-cloud and multi-edge orchestration for their customers
    • Next steps
  • Introduction
    • Defining the edge
    • The state of the edge
  • Cloud vs edge
    • Contrasting public cloud and public edge
    • Latency in fixed vs mobile networks
    • The rationale for telco edge
  • Telco edge propositions and use cases
    • Internal applications for telcos
    • External applications for telcos
    • Telco edge propositions based on telco’s capabilities
    • Potential use case opportunities for telco edge
  • Where is the telco edge?
    • Edge really means core for now
    • Challengers to the telco edge
  • Building the telco edge platform
    • Edge developers want a consistent and seamless experience
    • The potential providers of network edge platforms
    • Cloud-centric capabilities and business models are key the success of telco edge platforms
  • Overcoming challenges
    • Telco industry challenges
    • External challenges
  • Conclusion: What should telcos do?

Enter your details below to request an extract of the report

How telcos can make the world a safer place

Telecoms networks can support public safety

In the wake of the pandemic and multiple natural disasters, such as fire and flooding, both policymakers and people in general are placing a greater focus on preserving health and ensuring public safety. This report begins by explaining the concept of a digital nervous system – large numbers of connected sensors that can monitor events in real-time and thereby alert organizations and individuals to imminent threats to their health and safety.

With the advent of 5G, STL Partners believes telcos have a broad opportunity to help coordinate better use of the world’s resources and assets, as outlined in the report: The Coordination Age: A third age of telecoms. The application of reliable and ubiquitous connectivity to enable governments, companies and individuals to live in a safer world is one way in which operators can contribute to the Coordination Age.

Enter your details below to request an extract of the report

The chapters in this report consider the potential to use the data collected by telecoms networks to help counter the health and safety threats posed by:

  • Environmental factors, such as air pollution and high-levels of pollen,
  • Natural disasters, such as wildfires, flooding and earthquakes,
  • Infectious diseases
  • Violence, such as riots and shooting incidents
  • Accidents on roads, rivers and coastlines

In each case, the report considers how to harness new data collected by connected sensors, cameras and other monitors, in addition to data already captured by mobile networks (showing where people are and where they are moving to).  It also identifies who telcos will need to work with to develop and deploy such solutions, while discussing potential revenue streams.  In most cases, the report includes short case studies describing how telcos are trialling or deploying actual solutions, generally in partnership with other stakeholders.

The final chapter focuses on the role of telcos – the assets and the capabilities they have to improve health and safety.

It builds on previous STL Partners research including:

Managing an unstable world

Prior to the damage wrought by the pandemic, the world was gradually becoming a safer place for human beings. Global life expectancy has been rising steadily for many decades and the UN expects that trend to continue, albeit at a slower pace. That implies the world is safer than it was in the twentieth century and people are healthier than they used to be.

Global gains in life expectancy are slowing down

health and safety

Source: United Nations – World Population Prospects

But a succession of pandemics, more extreme weather events and rising pollution may yet reverse these positive trends. Indeed, many people now feel that they live in an increasingly unstable and dangerous world. Air pollution and over-crowding are worsening the health impact of respiratory conditions and infections, such as SARS-CoV-2. As climate change accelerates, experts expect an increase in flash flooding, wildfires, drought and intense heat. As extreme weather impacts the food and water supplies, civil unrest and even armed conflict could follow. In the modern world, the four horsemen of the apocalypse might symbolize infectious disease, extreme weather, pollution and violence.

As the human race grapples with these challenges, there is growing interest in services and technologies that could make the world a safer and healthier place. That demand is apparent among both individuals (hence the strong sales of wearable fitness monitors) and among public sector bodies’ rising interest in environment and crowd monitoring solutions.

As prevention is better than cure, both citizens and organisations are looking for early warning systems that can help them prepare for threats and take mitigating actions. For example, an individual with an underlying health condition could benefit from a service that warns them when they are approaching an area with poor air quality or large numbers of densely-packed people. Similarly, a municipality would welcome a solution that alerts them when large numbers of people are gathering in a public space or drains are close to being blocked or are overflowing.  The development of these kinds of early warning systems would involve tracking both events and people in real-time to detect patterns that signal a potential hazard or disruption, such as a riot or flooding.

Advances in artificial intelligence (AI), as well as the falling cost of cameras and other sensors, together with the rollout of increasingly dense telecoms networks, could make such systems viable. For example, a camera mounted on a lamppost could use image and audio recognition technologies to detect when a crowd is gathering in the locality, a gun has been fired, a drain has been flooded or an accident has occurred.

Many connected sensors and cameras, of course, won’t be in a fixed location – they will be attached to drones, vehicles and even bicycles, to support use cases where mobility will enhance the service. Such uses cases could include air quality monitoring, wildfire and flooding surveillance, and search and rescue.

Marty Sprinzen, CEO of Vantiq (a provider of event-driven, real-time collaborative applications) believes telecoms companies are best positioned to create a “global digital nervous system” as they have the networks and managed service capabilities to scale these applications for broad deployment. “Secure and reliable connectivity and networking (increasingly on ultrafast 5G networks) are just the beginning in terms of the value telcos can bring,” he wrote in an article for Forbes, published in November 2020. “They can lead on the provisioning and management of the literally billions of IoT devices — cameras, wearables and sensors of all types — that are integral to real-time systems. They can aggregate and analyze the massive amount of data that these systems generate and share insights with their customers. And they can bring together the software providers and integrators and various other parties that will be necessary to build, maintain and run such sophisticated systems.”

Sprinzen regards multi-access edge computing, or MEC, as the key to unlocking this market. He describes MEC as a new, distributed architecture that pushes compute and cloud-like capabilities out of data centres and the cloud to the edge of the network — closer to end-users and billions of IoT devices. This enables the filtering and processing of data at the edge in near real-time, to enable a rapid response to critical events.

This kind of digital nervous system could help curb the adverse impact of future pandemics. “I believe smart building applications will help companies monitor for and manage symptom detection, physical distancing, contact tracing, access management, safety compliance and asset tracking in the workplace,” Sprinzen wrote. “Real-time traffic monitoring will ease urban congestion and reduce the number and severity of accidents. Monitoring and management of water supplies, electrical grids and public transportation will safeguard us against equipment failures or attacks by bad actors. Environmental applications will provide early warnings of floods or wildfires. Food distribution and waste management applications will help us make more of our precious resources.”

Vantiq says one if its telco customers is implementing AI-enabled cameras, IoT sensors, location data and other technologies to monitor various aspects of its new headquarters building. He didn’t identify the telco, but added that it is the lead technology partner for a city that’s implementing a spectrum of smart city solutions to improve mobility, reduce congestion and strengthen disaster prevention.

Table of contents

  • Executive Summary
  • Introduction
  • Managing an unstable world
  • Monitoring air quality
    • Exploiting existing cellular infrastructure
    • Is mobile network data enough?
    • Smart lampposts to play a broad role
    • The economics of connecting environmental sensors
    • Sensors in the sky
  • Natural disasters
    • Spotting wildfires early
    • Earthquake alert systems
    • Crowdsourcing data
    • Infectious diseases
  • On street security
  • Conclusions – the opportunities for telcos
    • Ecosystem coordination – kickstarting the market
    • Devices – finding the right locations
    • Network – reliable, low cost connectivity
    • Data platform
    • Applications
  • Index

 

 

Enter your details below to request an extract of the report

Building telco edge: Why multi-cloud will dominate

Defining the edge

Edge computing will remain a focus for telecoms operators for the foreseeable future, both to optimise the network and enable new, third-party applications and services. In fact, 70% of survey respondents believe investment levels of edge computing for supporting third-party applications will increase over that for internal network infrastructure in the next five years.

This report explores how telecoms operators will build their edge computing business, infrastructure and services, and the role multi-cloud will take in this. Before diving into this, it is worth defining this confusing and complicated space. At a high level, edge computing refers to cloud-native computing (and storage) being brought closer to the end-device or source of the data, rather than centralised in a remote, hyperscale data centre.

The telecoms industry has been exploring the role of edge computing for over four years, starting when network functions virtualisation (NFV) began to make real strides. The initial interest was in mobile edge computing (MEC), but this has now evolved to multi-access edge computing to incorporate fixed networks and non-cellular networks too. Outside telecoms, there is edge compute capacity in regional data centres provided by third parties centres, e.g. data centre operators and cloud providers. These are often in untapped geographies, such as Tier 2 cities. In addition, there is edge compute at customer premises, e.g. business campuses or factories.

We outline the scope of edge computing below. There is a full spectrum of possible edges from devices to regional data centres. Some of these edge locations may be owned and/or operated by communications services providers (CSPs). The CSP edge contains the most relevant types of edge for CSPs: network edge and on-premises enterprise edge. They contain infrastructure either owned by a telecoms operator (e.g. a CSP data centre) or operated by one (e.g. network CPE at a customer site).

Enter your details below to request an extract of the report

The spectrum of edge computing locations

There are two main types of applications that can be processed on CSP edge computing:

  1. Telecoms applicationsthat run, protect and monitor the network – i.e. CSP’s own network functions;
  2. Consumer/enterpriseapplications – which CSPs may provide for third-party customers.

STL Partners has been supporting the telecoms industry in exploring the opportunity to provide services and solutions to third parties by leveraging their edge computing infrastructure. These could include enterprises deploying IT applications locally to comply with data sovereignty laws, developers using edge to optimise their applications, IoT solution vendors using edge to reduce latency for mission-critical applications, etc. Our survey highlighted the importance for CSPs in investing in the infrastructure for these applications. On average, CSPs believe that 40% of edge computing investments in the next 1-2 years will be used to support these applications, rather than be used for network functions infrastructure.

Defining edge computing within telecoms

Although the edge computing market is nascent, there are emerging use cases that seek to take advantage of edge computing’s main benefits. These include offering the flexibility that comes with the cloud more local to reduce latency, improving reliability, keeping data secure, and offloading processing from the end-device. However, use cases are at different stages of maturity; some will be deployed in the next two years in early adopter markets, others are more than five years away from commercial, wide scale deployments.

The maturity stages of edge computing use cases

Telecoms operators are keen to leverage edge computing to grow revenues, particularly in their enterprise business. There are different strategies emerging: one is to focus on enterprise connectivity and networking, another on developing a horizontal, cloud-like platform for developers, while a third focuses on building end-to-end solutions for specific verticals.

Types of edge services and business models

The challenge with any new technology is that it takes time to educate the market and engage the innovators who will build the applications that will leverage its potential. Edge computing is complex, because it has a unique ecosystem that spans several industries: cloud, telecoms, industrial, traditional ICT, plus specific vertical sectors. In order to build an edge-based solution, there needs to be adequate infrastructure (facility, hardware, connectivity, edge cloud) plus the applications and services, and these need to be integrated so they work together seamlessly.

The edge value chain

Regardless of the business model and services strategy a telecoms operator chooses to pursue, it will need to first determine how best to build its edge infrastructure to optimise results. This report will dive into three key questions CSPs are still trying to evaluate:

  1. How should telecoms operators build edge computing infrastructure that can support both enterprise applications and network functions?
  2. To what extent should telecoms operators work with partners, particularly the hyperscalers, to build their edge and take services to market?
  3. How can telecoms operators effectively work with the ecosystem?

Table of Contents

  • Preface
  • Executive Summary
    • There are three key factors to consider to build the CSP edge
    • The edge will be multi-(edge) cloud
    • CSPs must build capabilities and partnerships today to support their edge business
  • Defining the edge
  • Laying down the foundations: Options for building the CSP edge
    • Convergence
    • Organisation
    • Hyperscaler partnerships
  • There is no single edge – it is multi-cloud
  • Conclusions and recommendations: What CSPs should do next
  • Index

Enter your details below to request an extract of the report

SK Telecom’s journey in commercialising 5G

SK Telecom (SKT), Verizon and Telstra were among the first in the world to commence the commercialisation of 5G networks. SK Telecom and Verizon launched broadband-based propositions in 2018, but it was only in 2019, when 5G smartphones became available, that consumer, business and enterprise customers were really able to experience the networks.

Part 1 of our 3-part series looks at SKT’s journey and how its propositions have developed from when 5G was launched to the current time. It includes an analysis of both consumer and business offerings promoted on SKT’s website to identify the revenues streams that 5G is supporting now – as opposed to revenues that new 5G use cases might deliver in future.

Download the report extract

At launch, SKT introduced 5G-specific tariffs, that coupled large data allowances with unique apps and services designed to ensure data consumption and demonstrate the advantages of 5G access. 5G plans were more expensive than 4G plans, but the price of 5G data per MB was less than that for 4G to tempt customers to make the switch.

SKT’s well-documented approach to 5G has been regarded as inspirational by other telcos, though many consider a similar approach out-of-reach (e.g. for other telcos, coverage issues may limit their ability to charge a premium, or 5G-value-adding services may be lacking).

This report examines the market factors that have enabled and constrained SKT’s 5G actions, as it moves to deliver propositions for audiences beyond the early adopters and heavy data users. It identifies lessons in the commercialisation of 5G for those operators that are on their own 5G journeys and those that have yet to start.

5G performance to date

This analysis is based on the latest data available as we went to press in March 2021.

There were 10.9 million 5G subscribers in South Korea at end-November 2020 (15.5% of the total 70.5 million mobile subscriptions in the market, according to the Ministry of Science and ICT) and network coverage is reported to be more than 90% of the population (a figure that was already quoted in March 2020). Subscriber numbers grew by nearly one million in November 2020, boosted by the introduction of the iPhone 12, which sold 600K units that month.

SKT’s share of 5G subscribers was 46% (5.05 million) in November, to which SKT added a further 400K+ in December, reaching 5.48 million by the end of 2020.

The telco took just four and a half months to reach one million 5G subscribers following launch, significantly less than it had taken with 4G, which had attained the same milestone in eight months following 4G’s commercial launch in 2011.

SKT quarterly 5G subscriber numbers (millions)

SK Telecom 5G subscribers

Source: STL Partners, SK Telecom

SKT credits 5G subscriber growth for its 2.8% MNO revenue increase in the year to December 2020, however the impact on ARPU is less clear. An initial increase in overall ARPU followed the introduction of higher priced 5G plans at launch, but ARPU has fallen back slightly since then, possibly due to COVID-19 economic factors.

SKT total ARPU trend following 5G launch

SK Telecom 5G ARPU

Source: STL Partners

In its 2020 year-end earnings call, SKT reported that it was top of the leader board in South Korea’s three customer satisfaction surveys and in the 5G quality assessment by the Ministry of Science and ICT.

As a cautionary note, Hong Jung-min of the ruling Democratic Party reported that 500K 5G users had switched to 4G LTE during August 2020 due to network issues, including limited coverage, slower than expected speeds. It is unclear how SKT was affected by this.

 

Table of Contents

  • Executive Summary
    • Recommendations
    • Next steps
  • Introduction
  • 5G performance to date
  • Details of launch
  • Consumer propositions
    • At launch
    • …And now
  • Business and enterprise propositions
    • At launch
    • …And now
  • Analysis of 5G market development
    • What next?
    • mmWave
  • Conclusion
  • Appendix 1

Download the report extract

Growing B2B revenues from edge: Five new telco services

=======================================================================================

Download the additional file on the left for the PPT chart pack accompanying this report

=======================================================================================

Edge computing has sparked significant interest from telcos

Edge computing brings cloud capabilities such as data processing and storage closer to the end user, device, or the source of data. There are two main opportunity areas for telcos in edge computing. Firstly, telcos have an opportunity to provide edge computing via edge data centres at sites on the telecoms network – network edge, sometimes referred to as multi-access edge computing. Secondly, telcos can offer edge-enabled services through compute platforms at the customer premises – on-premise edge.

Although there is an opportunity for telcos to offer new services and an enhanced customer experience to their consumer customer base, much of the edge computing opportunity for telcos is in the B2B segment. We have covered the general strategy operators are taking for edge computing in our previous report Telco edge computing: What’s the operator strategy? and through insights on our Edge Hub. Within enterprise, edge offers a chance for operators to move beyond offering connectivity services and extend into the platform and application space.

However, the market is still young; enterprises are still at an early stage of understanding the potential benefits of edge computing. There is limited availability of network edges; telcos are still deploying sites and few have begun to offer mechanisms to access the edge compute infrastructure within them. As a result, developers are only just starting to build applications to leverage this new infrastructure.

Enter your details below to request an extract of the report

Telcos are still grappling with defining the opportunity. Since adoption is so nascent, many feel that they are not able to prove the commercial case to unlock significant investment. Some operators are pushing ahead by building out edge infrastructure, securing partnerships and launching edge computing services. Nonetheless, even these operators are keeping an open mind to edge and waiting to see what unfolds as the market matures. What is clear is that, with the hyperscalers and others moving into the edge, telcos are increasingly keen to capitalise on the edge opportunity and solidify their position in the market before it’s too late.The sweet spot opportunity for edge is highly dependent on telcos’ starting points: some have existing capabilities within B2B networking and cloud, partnerships, and strong customer relationships. But for other telcos, the B2B business is at a very early stage. Meanwhile, edge infrastructure build differs across telcos, with some choosing to partner with hyperscalers to create the hardware and software stack within edge data centres while others are opting to build their own stack.

It is therefore critical for telcos to:

  1. Assess whether they can leverage existing B2Bservices, customers and partners versus where they need to invest to fill the gaps
  2. Understand which factors may affect how successful they are in offering new edgeservices
  3. Prioritise which servicesthey could offer to B2B customers

In this report, we focus on answering the following questions:

Which B2B services can edge computing add value to? And how ready are telcos to take new edge services to market?

In order to better understand how operators are thinking about edge services and what they are looking to offer today, we interviewed eight technology and strategy leaders working in operators primarily across Europe.

To ensure an open and candid dialogue, we have anonymised their contributions. We would like to take the opportunity to thank those who participated in this research. A summary of the interviewee profiles is provided in the Appendix.

Telcos’ B2B businesses today

As consumer revenues come under increasing pressure, operators are looking to their B2B businesses to provide a new source of revenue growth. The maturity of their B2B businesses today varies from those who have a limited offering focussed primarily on phones, SIMs and basic connectivity (particularly mobile-only telcos, e.g. Three UK), to those who are providing full vertical applications or taking on the role of systems integrator (often incumbents or telcos with fixed networks, e.g. DTAG, Vodafone). Many telcos are looking for opportunities to take on more of the latter role, by expanding their B2B offerings and increasing their foothold in the value chain e.g. by offering managed services. Particularly with the arrival of 5G, they see greater potential to grow revenues through B2B services compared with B2C.

Maturity levels of telcos’ B2B business

Table of content

  • Executive Summary
  • Introduction
  • Strategic principles for B2B telco edge
    • Telcos’ B2B businesses today
    • Three telco strategies for B2B edge
    • On-premise edge and network edge are separate opportunities
    • Telcos are open to partnering with the hyperscalers for edge
  • Five types of B2B edge services
    • Edge-to-cloud networking
    • Private edge infrastructure
    • Network edge platforms
    • Multi-edge and cloud orchestration
    • Vertical solutions
  • Evaluating the opportunity: How should telcos prioritise?
    • It’s not just about technology
    • However, significant value creation does not come easy
    • Telcos should consider new business models to ensure success
  • Next steps for telcos in building B2B edge services
    • Prioritise services to monetise edge
    • Evaluate the role of partners
    • Work closely with customers given that edge is still nascent
  • Appendix
    • Interviewee overview
  • Index

Enter your details below to request an extract of the report

Building telco edge infrastructure: MEC, Private LTE and VRAN

Reality check: edge computing is not yet mature, and much is still to be decided

Edge computing is still a maturing domain. STL Partners has written extensively on the topic of edge computing over the last 4 years. Within that timeframe, we have seen significant change in terminology, attitudes and approaches from telecoms and adjacent industries to the topic area.  Plans for building telco edge infrastructure have also evolved.

Within the past twelve months, we’ve seen high profile partnerships between hyperscale cloud providers (Amazon Web Services, Microsoft and Google) and telecoms operators that are likely to catalyse the industry and accelerate route to market. We’ve also seen early movers within the industry (such as SK Telecom) developing MEC platforms to enable access to their edge infrastructure.

In the course of this report, we will highlight which domains will drive early adoption for edge, and the potential roll out we could see over the next 5 years if operators move to capitalise on the opportunity. However, to start, it is important to evaluate the situation today.

Commercial deployments of edge computing are rare, and most operators are still in the exploration phase. For many, they have not and will not commit to the roll out of edge infrastructure until they have seen evidence from early movers that it is a genuine opportunity for the industry. For even more, the idea of additional capex investment on edge infrastructure, on top of their 5G rollout plans, is a difficult commitment to make.

Where is “the edge”?

There is no one clear definition of edge computing. Depending on the world you are coming from (Telco? Application developer? Data centre operator? Cloud provider? etc.), you are likely to define it differently. In practice, we know that even within these organisations there are differences between technical and commercial teams around the concept and terminology used to describe “the edge”.

For the purposes on this paper, we will be discussing edge computing primarily from the perspective of a telecoms operator. As such, we’ll be focusing on edge infrastructure that will be rolled out within their network infrastructure or that they will play a role in connecting. This may equate to adding additional servers into an existing technical space (such as a Central Office), or it may mean investing in new microdata centres. The servers may be bought, installed and managed by the telco themselves, or this could be done by a third party, but in all cases the real estate (e.g. the physical location as well as power and cooling) is owned either by the telecoms operator, or by the enterprise who is buying an edge-enabled solution.

Enter your details below to request an extract of the report

Operators have choice and a range of options for where and how they might develop edge computing sites. The graphic below starts to map some of the potential physical locations for an edge site. In this report, STL Partners forecasts edge infrastructure deployments between 2020 and 2024, by type of operator, use-case domains, edge locations and type of computing.

There is a spectrum of edge infrastructure in which telcos may invest

mapping edge infrastructure investmentSource: STL Partners

This paper primarily draws on discussions with operators and others within the edge ecosystem conducted between February and March 2020. We interviewed a range of operators, and a range of job roles within them, to gain a snapshot of the existing attitudes and ambitions within the industry to shape our understanding of how telcos are likely to build out edge infrastructure.

Table of Contents

  • Executive Summary
  • Preface
  • Reality check: edge computing is not yet mature, and much is still to be decided
    • Reality #1: Organisationally, operators are still divided
    • Reality #2: The edge ecosystem is evolving fast
    • Reality #3: Operators are trying to predict, respond to and figure out what the “new normal” will be post COVID-19
  • Edge computing: key terms and definitions
    • Where is “the edge”?
    • What applications & use cases will run at edge sites?
    • What is inside a telco edge site?
  • How edge will play out: 5-year evolution
    • Modelling exercise: converting hype into numbers
    • Our findings: edge deployments won’t be very “edgy” in 2024
    • Short-term adoption of vRAN is the driving factor
    • New revenues from MEC remain a longer-term opportunity
    • Short-term adoption is focused on efficient operations, but revenue opportunity has not been dismissed
  • Addressing the edge opportunity: operators can be more than infrastructure providers
  • Conclusions: practical recommendations for operators

Enter your details below to request an extract of the report

Telco edge computing: What is the operator strategy?

To access the report chart pack in PPT download the additional file on the left

Edge computing can help telcos to move up the value chain

The edge computing market and the technologies enabling it are rapidly developing and attracting new players, providing new opportunities to enterprises and service providers. Telco operators are eyeing the market and looking to leverage the technology to move up the value chain and generate more revenue from their networks and services. Edge computing also represents an opportunity for telcos to extend their role beyond offering connectivity services and move into the platform and the application space.

However, operators will be faced with tough competition from other market players such as cloud providers, who are moving rapidly to define and own the biggest share of the edge market. Plus, industrial solution providers, such as Bosch and Siemens, are similarly investing in their own edge services. Telcos are also dealing with technical and business challenges as they venture into the new market and trying to position themselves and identifying their strategies accordingly.

Telcos that fail to develop a strategic approach to the edge could risk losing their share of the growing market as non-telco first movers continue to develop the technology and dictate the market dynamics. This report looks into what telcos should consider regarding their edge strategies and what roles they can play in the market.

Following this introduction, we focus on:

  1. Edge terminology and structure, explaining common terms used within the edge computing context, where the edge resides, and the role of edge computing in 5G.
  2. An overview of the edge computing market, describing different types of stakeholders, current telecoms operators’ deployments and plans, competition from hyperscale cloud providers and the current investment and consolidation trends.
  3. Telcos challenges in addressing the edge opportunity: technical, organisational and commercial challenges given the market
  4. Potential use cases and business models for operators, also exploring possible scenarios of how the market is going to develop and operators’ likely positioning.
  5. A set of recommendations for operators that are building their strategy for the edge.

Enter your details below to request an extract of the report

What is edge computing and where exactly is the edge?

Edge computing brings cloud services and capabilities including computing, storage and networking physically closer to the end-user by locating them on more widely distributed compute infrastructure, typically at smaller sites.

One could argue that edge computing has existed for some time – local infrastructure has been used for compute and storage, be it end-devices, gateways or on-premises data centres. However, edge computing, or edge cloud, refers to bringing the flexibility and openness of cloud-native infrastructure to that local infrastructure.

In contrast to hyperscale cloud computing where all the data is sent to central locations to be processed and stored, edge computing local processing aims to reduce time and save bandwidth needed to send and receive data between the applications and cloud, which improves the performance of the network and the applications. This does not mean that edge computing is an alternative to cloud computing. It is rather an evolutionary step that complements the current cloud computing infrastructure and offers more flexibility in executing and delivering applications.

Edge computing offers mobile operators several opportunities such as:

  • Differentiating service offerings using edge capabilities
  • Providing new applications and solutions using edge capabilities
  • Enabling customers and partners to leverage the distributed computing network in application development
  • Improving networkperformance and achieving efficiencies / cost savings

As edge computing technologies and definitions are still evolving, different terms are sometimes used interchangeably or have been associated with a certain type of stakeholder. For example, mobile edge computing is often used within the mobile network context and has evolved into multi-access edge computing (MEC) – adopted by the European Telecommunications Standards Institute (ETSI) – to include fixed and converged network edge computing scenarios. Fog computing is also often compared to edge computing; the former includes running intelligence on the end-device and is more IoT focused.

These are some of the key terms that need to be identified when discussing edge computing:

  • Network edge refers to edge compute locations that are at sites or points of presence (PoPs) owned by a telecoms operator, for example at a central office in the mobile network or at an ISP’s node.
  • Telco edge cloud is mainly defined as distributed compute managed by a telco  This includes running workloads on customer premises equipment (CPE) at customers’ sites as well as locations within the operator network such as base stations, central offices and other aggregation points on access and/or core network. One of the reasons for caching and processing data closer to the customer data centres is that it allows both the operators and their customers to enjoy the benefit of reduced backhaul traffic and costs.
  • On-premise edge computing refers to the computing resources that are residing at the customer side, e.g. in a gateway on-site, an on-premises data centre, etc. As a result, customers retain their sensitive data on-premise and enjoy other flexibility and elasticity benefits brought by edge computing.
  • Edge cloud is used to describe the virtualised infrastructure available at the edge. It creates a distributed version of the cloud with some flexibility and scalability at the edge. This flexibility allows it to have the capacity to handle sudden surges in workloads from unplanned activities, unlike static on-premise servers. Figure 1 shows the differences between these terms.

Figure 1: Edge computing types

definition of edge computing

Source: STL Partners

Network infrastructure and how the edge relates to 5G

Discussions on edge computing strategies and market are often linked to 5G. Both technologies have overlapping goals of improving performance and throughput and reducing latency for applications such as AR/VR, autonomous vehicles and IoT. 5G improves speed by increasing spectral efficacy, it offers the potential of much higher speeds than 4G. Edge computing, on the other hand, reduces latency by shortening the time required for data processing by allocating resources closer to the application. When combined, edge and 5G can help to achieve round-trip latency below 10 milliseconds.

While 5G deployment is yet to accelerate and reach ubiquitous coverage, the edge can be utilised in some places to reduce latency where needed. There are two reasons why the edge will be part of 5G:

  • First, it has been included in the 5Gstandards (3GPP Release 15) to enable ultra-low latency which will not be achieved by only improvements in the radio interface.
  • Second, operators are in general taking a slow and gradual approach to 5G deployment which means that 5G coverage alone will not provide a big incentive for developers to drive the application market. Edge can be used to fill the network gaps to stimulate the application market growth.

The network edge can be used for applications that need coverage (i.e. accessible anywhere) and can be moved across different edge locations to scale capacity up or down as required. Where an operator decides to establish an edge node depends on:

  • Application latency needs. Some applications such as streaming virtual reality or mission critical applications will require locations close enough to its users to enable sub-50 milliseconds latency.
  • Current network topology. Based on the operators’ network topology, there will be selected locations that can meet the edge latency requirements for the specific application under consideration in terms of the number of hops and the part of the network it resides in.
  • Virtualisation roadmap. The operator needs to consider virtualisation roadmap and where data centre facilities are planned to be built to support future network
  • Site and maintenance costs. The cloud computing economies of scale may diminish as the number of sites proliferate at the edge, for example there is a significant difference in maintaining 1-2 large data centres to maintaining 100s across the country
  • Site availability. Some operators’ edge compute deployment plans assume the nodes reside in the same facilities as those which host their NFV infrastructure. However, many telcos are still in the process of renovating these locations to turn them into (mini) data centres so aren’t yet ready.
  • Site ownership. Sometimes the preferred edge location is within sites that the operators have limited control over, whether that is in the customer premise or within the network. For example, in the US, the cell towers are owned by tower operators such as Crown Castle, American Tower and SBA Communications.

The potential locations for edge nodes can be mapped across the mobile network in four levels as shown in Figure 2.

Figure 2: possible locations for edge computing

edge computing locations

Source: STL Partners

Table of Contents

  • Executive Summary
    • Recommendations for telco operators at the edge
    • Four key use cases for operators
    • Edge computing players are tackling market fragmentation with strategic partnerships
    • What next?
  • Table of Figures
  • Introduction
  • Definitions of edge computing terms and key components
    • What is edge computing and where exactly is the edge?
    • Network infrastructure and how the edge relates to 5G
  • Market overview and opportunities
    • The value chain and the types of stakeholders
    • Hyperscale cloud provider activities at the edge
    • Telco initiatives, pilots and plans
    • Investment and merger and acquisition trends in edge computing
  • Use cases and business models for telcos
    • Telco edge computing use cases
    • Vertical opportunities
    • Roles and business models for telcos
  • Telcos’ challenges at the edge
  • Scenarios for network edge infrastructure development
  • Recommendation
  • Index

Enter your details below to request an extract of the report

Cloud gaming: What is the telco play?

To access the report chart pack in PPT download the additional file on the left

Drivers for cloud gaming services

Although many people still think of PlayStation and Xbox when they think about gaming, the console market represents only a third of the global games market. From its arcade and console-based beginnings, the gaming industry has come a long way. Over the past 20 years, one of the most significant market trends has been growth of casual gamers. Whereas hardcore gamers are passionate about frequent play and will pay more to play premium games, casual gamers play to pass the time. With the rapid adoption of smartphones capable of supporting gaming applications over the past decade, the population of casual/occasional gamers has risen dramatically.

This trend has seen the advent of free-to-play business models for games, further expanding the industry’s reach. In our earlier report, STL estimated that 45% of the population in the U.S. are either casual gamers (between 2 and 5 hours a week) or occasional gamers (up to 2 hours a week). By contrast, we estimated that hardcore gamers (more than 15 hours a week) make up 5% of the U.S. population, while regular players (5 to 15 hours a week) account for a further 15% of the population.

The expansion in the number of players is driving interest in ‘cloud gaming’. Instead of games running on a console or PC, cloud gaming involves streaming games onto a device from remote servers. The actual game is stored and run on a remote compute with the results being live streamed to the player’s device. This has the important advantage of eliminating the need for players to purchase dedicated gaming hardware. Now, the quality of the internet connection becomes the most important contributor to the gaming experience. While this type of gaming is still in its infancy, and faces a number of challenges, many companies are now entering the cloud gaming fold in an effort to capitalise on the new opportunity.

5G can support cloud gaming traffic growth

Cloud gaming requires not just high bandwidth and low latency, but also a stable connection and consistent low latency (jitter). In theory, 5G promises to deliver stable ultra-low latency. In practice, an enormous amount of infrastructure investment will be required in order to enable a fully loaded 5G network to perform as well as end-to-end fibre5G networks operating in the lower frequency bands would likely buckle under the load if lots of gamers in a cell needed a continuous 25Mbps stream. While 5G in millimetre-wave spectrum would have more capacity, it would require small cells and other mechanisms to ensure indoor penetration, given the spectrum is short range and could be blocked by obstacles such as walls.

Enter your details below to request an extract of the report

A complicated ecosystem

As explained in our earlier report, Cloud gaming: New opportunities for telcos?, the cloud gaming ecosystem is beginning to take shape. This is being accelerated by the growing availability of fibre and high-speed broadband, which is now being augmented by 5G and, in some cases, edge data centres. Early movers in cloud gaming are offering a range of services, from gaming rigs, to game development platforms, cloud computing infrastructure, or an amalgamation of these.

One of the main attractions of cloud gaming is the potential hardware savings for gamers. High-end PC gaming can be an extremely expensive hobby: gaming PCs range from £500 for the very cheapest to over £5,000 for the very top end. They also require frequent hardware upgrades in order to meet the increasing processing demands of new gaming titles. With cloud gaming, you can access the latest graphics processing unit at a much lower cost.

By some estimates, cloud gaming could deliver a high-end gaming environment at a quarter of the cost of a traditional console-based approach, as it would eliminate the need for retailing, packaging and delivering hardware and software to consumers, while also tapping the economies of scale inherent in the cloud. However, in STL Partners’ view that is a best-case scenario and a 50% reduction in costs is probably more realistic.

STL Partners believes adoption of cloud gaming will be gradual and piecemeal for the next few years, as console gamers work their way through another generation of consoles and casual gamers are reluctant to commit to a monthly subscription. However, from 2022, adoption is likely to grow rapidly as cloud gaming propositions improve.

At this stage, it is not yet clear who will dominate the value chain, if anyone. Will the “hyperscalers” be successful in creating a ‘Netflix’ for games? Google is certainly trying to do this with its Stadia platform, which has yet to gain any real traction, due to both its limited games library and its perceived technological immaturity. The established players in the games industry, such as EA, Microsoft (Xbox) and Sony (PlayStation), have launched cloud gaming offerings, or are, at least, in the process of doing so. Some telcos, such as Deutsche Telekom and Sunrise, are developing their own cloud gaming services, while SK Telecom is partnering with Microsoft.

What telcos can learn from Shadow’s cloud gaming proposition

The rest of this report explores the business models being pursued by cloud gaming providers. Specifically, it looks at cloud gaming company Shadow and how it fits into the wider ecosystem, before evaluating how its distinct approach compares with that of the major players in online entertainment, such as Sony and Google. The second half of the report considers the implications for telcos.

Table of Contents

  • Executive Summary
  • Introduction
  • Cloud gaming: a complicated ecosystem
    • The battle of the business models
    • The economics of cloud gaming and pricing models
    • Content offering will trump price
    • Cloud gaming is well positioned for casual gamers
    • The future cloud gaming landscape
  • 5G and fixed wireless
  • The role of edge computing
  • How and where can telcos add value?
  • Conclusions

Enter your details below to request an extract of the report

Open RAN: What should telcos do?

————————————————————————————————————–

Related webinar: Open RAN: What should telcos do?

In this webinar STL Partners addressed the three most important sub-components of Open RAN (open-RAN, vRAN and C-RAN) and how they interact to enable a new, virtualized, less vendor-dominated RAN ecosystem. The webinar covered:

* Why Open RAN matters – and why it will be about 4G (not 5G) in the short term
* Data-led overview of existing Open RAN initiatives and challenges
* Our recommended deployment strategies for operators
* What the vendors are up to – and how we expect that to change

Date: Tuesday 4th August 2020
Time: 4pm GMT

Access the video recording and presentation slides

————————————————————————————————————————————————————————-

For the report chart pack download the additional file on the left

What is the open RAN and why does it matter?

The open RAN’ encompasses a group of technological approaches that are designed to make the radio access network (RAN) more cost effective and flexible. It involves a shift away from traditional, proprietary radio hardware and network architectures, driven by single vendors, towards new, virtualised platforms and a more open vendor ecosystem.

Legacy RAN: single-vendor and inflexible

The traditional, legacy radio access network (RAN) uses dedicated hardware to deliver the baseband function (modulation and management of the frequency range used for cellular network transmission), along with proprietary interfaces (typically based on the Common Public Radio Interface (CPRI) standard) for the fronthaul from the baseband unit (BBU) to the remote radio unit (RRU) at the top of the transmitter mast.

Figure 1: Legacy RAN architecture

Source: STL Partners

This means that, typically, telcos have needed to buy the baseband and the radio from a single vendor, with the market presently dominated largely by the ‘big three’ (Ericsson, Huawei and Nokia), together with a smaller market share for Samsung and ZTE.

The architecture of the legacy RAN – with BBUs typically but not always at every cell site – has many limitations:

  • It is resource-intensive and energy-inefficient – employing a mass of redundant equipment operating at well below capacity most of the time, while consuming a lot of power
  • It is expensive, as telcos are obliged to purchase and operate a large inventory of physical kit from a limited number of suppliers, which keeps the prices high
  • It is inflexible, as telcos are unable to deploy to new and varied sites – e.g. macro-cells, small cells and micro-cells with different radios and frequency ranges – in an agile and cost-effective manner
  • It is more costly to manage and maintain, as there is less automation and more physical kit to support, requiring personnel to be sent out to remote sites
  • It is not very programmable to support the varied frequency, latency and bandwidth demands of different services.

Enter your details below to request an extract of the report

Moving to the open RAN: C-RAN, vRAN and open-RAN

There are now many distinct technologies and standards emerging in the radio access space that involve a shift away from traditional, proprietary radio hardware and network architectures, driven by single vendors, towards new, virtualised platforms and a more open vendor ecosystem.

We have adopted ‘the open RAN’ as an umbrella term which encompasses all of these technologies. Together, they are expected to make the RAN more cost effective and flexible. The three most important sub-components of the open RAN are C-RAN, vRAN and open-RAN.

Centralised RAN (C-RAN), also known as cloud RAN, involves distributing and centralising the baseband functionality across different telco edge, aggregation and core locations, and in the telco cloud, so that baseband processing for multiple sites can be carried out in different locations, nearer or further to the end user.

This enables more effective control and programming of capacity, latency, spectrum usage and service quality, including in support of 5G core-enabled technologies and services such as network slicing, URLLC, etc. In particular, baseband functionality can be split between more centralised sites (central baseband units – CU) and more distributed sites (distributed unit – DU) in much the same way, and for a similar purpose, as the split between centralised control planes and distributed user planes in the mobile core, as illustrated below:

Figure 2: Centralised RAN (C-RAN) architecture

Cloud RAN architecture

Source: STL Partners

Virtual RAN (vRAN) involves virtualising (and now also containerising) the BBU so that it is run as software on generic hardware (General Purpose Processing – GPP) platforms. This enables the baseband software and hardware, and even different components of them, to be supplied by different vendors.

Figure 3: Virtual RAN (vRAN) architecture

vRAN architecture

Source: STL Partners

Open-RANnote the hyphenation – involves replacing the vendor-proprietary interfaces between the BBU and the RRU with open standards. This enables BBUs (and parts thereof) from one or multiple vendors to interoperate with radios from other vendors, resulting in a fully disaggregated RAN:

Figure 4: Open-RAN architecture

Open-RAN architecture

Source: STL Partners

 

RAN terminology: clearing up confusion

You will have noticed that the technologies above have similar-sounding names and overlapping definitions. To add to potential confusion, they are often deployed together.

Figure 5: The open RAN Venn – How C-RAN, vRAN and open-RAN fit together

Open-RAN venn: open-RAN inside vRAN inside C-RAN

Source: STL Partners

As the above diagram illustrates, all forms of the open RAN involve C-RAN, but only a subset of C-RAN involves virtualisation of the baseband function (vRAN); and only a subset of vRAN involves disaggregation of the BBU and RRU (open-RAN).

To help eliminate ambiguity we are adopting the typographical convention ‘open-RAN’ to convey the narrower meaning: disaggregation of the BBU and RRU facilitated by open interfaces. Similarly, where we are dealing with deployments or architectures that involve vRAN and / or cloud RAN but not open-RAN in the narrower sense, we refer to those examples as ‘vRAN’ or ‘C-RAN’ as appropriate.

In the coming pages, we will investigate why open RAN matters, what telcos are doing about it – and what they should do next.

Table of contents

  • Executive summary
  • What is the open RAN and why does it matter?
    • Legacy RAN: single-vendor and inflexible
    • The open RAN: disaggregated and flexible
    • Terminology, initiatives & standards: clearing up confusion
  • What are the opportunities for open RAN?
    • Deployment in macro networks
    • Deployment in greenfield networks
    • Deployment in geographically-dispersed/under-served areas
    • Deployment to support consolidation of radio generations
    • Deployment to support capacity and coverage build-out
    • Deployment to support private and neutral host networks
  • How have operators deployed open RAN?
    • What are the operators doing?
    • How successful have deployments been?
  • How are vendors approaching open RAN?
    • Challenger RAN vendors: pushing for a revolution
    • Incumbent RAN vendors: resisting the open RAN
    • Are incumbent vendors taking the right approach?
  • How should operators do open RAN?
    • Step 1: Define the roadmap
    • Step 2: Implement
    • Step 3: Measure success
  • Conclusions
    • What next?

Enter your details below to request an extract of the report

MWC19: What really happened and what to do about it

If you don’t subscribe to our research yet, you can download the free report as part of our sample report series.

Mobile World Congress 2019

According to the GSMA, 100,000 people gathered in Barcelona last week for the 2019 Mobile World Congress. It is a remarkable testament to the growth and size of the industry that the show has kept growing. I’d like to add our sincere thanks to the GSMA for partnering with STL Partners again for the event.

It was a vibrant and busy show, but what was behind all the noise and action?

While at the Congress last week, I wrote a brief pastiche of the visceral impact of the show’s 5G frenzy in MWC2019: Beyond beyond on Linked-In. On a more serious note, we’ve previously researched 5G intensively in over ten reports, including:

The point of the pastiche and these references is that 5G is both a significant development, but also at the peak of its hype-cycle. It’s being touted as the next great hope for growth for the telecoms industry, but its impact will be more piecemeal for reasons we explained in 5G: ‘Just another G’ – yet a catalyst of change. To drive more rational decision-making, 5G and telco strategy overall need to be understood within a broader context.

The question that last week’s article didn’t answer was “what were the deep and important signals that lay behind the 5G hype at MWC?”. That is what this report covers, along with recommendations for actions by telcos, vendors and indeed the GSMA.

Enter your details below to receive a free version of this report as part of our sample report series

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

The Coordination Age: A fundamental change in the world economy

We’ve outlined in our previous reports The Coordination Age: A third age of telecoms and How the Coordination Age changes the game that there is a massive change underway in the way economies work.

The ongoing transition to the Coordination Age presents an opportunity for telcos to redefine their roles and create new sources of value. It may also present a possible (albeit partial) swing of advantage back towards the nationally and locally organised telcos from the centralised, global scale technology players.

The Coordination Age is a result of the combination of the changing needs and demands of the world’s people, businesses, and governments, evolving technological solutions and possibilities, and  the need to preserve the most habitable possible future environment for the world’s population.

The underlying systemic world need is to improve the efficiency of the use of its many resources, which include food, materials, fuel, land, and water. It is also necessary and important to make the use of human resources (people, time, health, money, employment, etc,) productive and rewarding.

Its principle difference from the Information Age is the need to enable the better co-ordination of ‘real-world’ resources (e.g. people, time and other assets) and digital resources (i.e. information, computing power, etc.).

Overall, there are both changes in:

  • Demand, as individuals and organisations seek to improve their resource effectiveness
  • Supply, as a confluence of technological advances including AI, automation, IoT, NFV, 5G, edge, cloud, digital twins and the broad concept of ‘digitisation’ fundamentally change the operation and business models of industry production processes.

Figure 1: Global demand and supply trends are driving the Coordination Age

supply and demand are driving need for efficiency MWC theme

Source: STL Partners

Dr Che’s triangle of needs

We had many conversations at MWC19 about the Coordination Age. One fellow traveller that we met was Dr Haiping Che, the eminent SVP and Chief Digital Transformation Officer at Huawei.

Dr Che summarised one aspect of future success for the industry in with a rather neat triangle in his notebook, which I reproduce in the following chart.

Figure 2: Dr Che’s triangle – successful strategies will serve three goals

Huawei MWC19 customer, economy, environment

Source: Dr Haiping Che, SVP Chief Digital Transformation Officer, Huawei

Dr Che also made the insightful comment that a further major change will be that collaboration needs to increase in production networks to deliver increased coordination. While collaboration is increasingly common in the sharing economy on the demand side, it is not yet as strong a feature in production.

Accelerated evolution: Technologies versus problems solved

A further trend we’ve identified is that there is a general progression in the way that the increased combination of physical and digital assets produces benefits in the supply-side of the economy.

It broadly follows the steps laid out in Figure 3, taken from work in progress on a soon to be published STL Partners report on “Why we need an Internet for Things (I4T)”.

Figure 3: How production is changing in the Coordination Age

better data visualisation, models interact with the real world internally and then externally mwc19

Source: STL Partners

The rest of this report summarises where telcos and vendors are on all this, and what should they do next.

Contents

  • Executive Summary
  • Introduction
  • Mobile World Congress 2019
  • The Coordination Age: A fundamental change in the world economy
  • Dr Che’s triangle of needs
  • Accelerated evolution: Technologies versus problems solved
  • What’s happening now?
  • Signs of change at MWC 2019
  • Where are the telcos?
  • Vendors: Going any which way to enterprise
  • What should operators do?
  • Change the mindset
  • Make 5G pay
  • Get smarter in enterprise
  • How the GSMA should evolve MWC2020
  • Next steps for STL Partners

Figures

  1. Global demand and supply trends are driving the Coordination Age
  2. Dr Che’s triangle – successful future strategies will serve three goals
  3. How production is changing in the Coordination Age
  4. Every picture tells a story – growing transport industry presence at MWC 2019
  5. Elisa Automate at MWC 2019
  6. Deutsche Telekom CEO Tim Höttges at MWC 2019
  7. Increasing telecoms capital investment is yielding lower and lower returns
  8. Three new telecoms industry business models

Enter your details below to receive a free version of this report as part of our sample report series

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

5G: The first three years

The near future of 5G

Who, among telecoms operators, are 5G leaders? Verizon Wireless is certainly among the most enthusiastic proponents.

On October 1, 2018, Verizon turned on the world’s first major 5G network. It is spending US$20 billion to offer 30 million homes millimetre wave 5G, often at speeds around a gigabit. One of the first homes in Houston “clocked speeds of 1.3 gigabits per second at 2,000 feet.”  CEO Vestberg expects to cover the whole country by 2028, some with 3.5 GHz. 5G: The first three years cuts through the hype and confusion to provide the industry a clear picture of the likely future. A companion report, 5G smart strategies, explores how 5G helps carriers make more money and defeat the competition.

This report was written by Dave Burstein with substantial help from Andrew Collinson and Dean Bubley.

What is 5G?

In one sense, 5G is just a name for all the new technologies now being widely deployed. It’s just better mobile broadband. It will not change the world anytime soon.

There are two very different flavours of 5G:

  • Millimetre wave: offers about 3X the capacity of mid-band or the best 4G. Spectrum used is from 20 GHz to over 60 GHz. Verizon’s mmWave system is designed to deliver 1 gigabit downloads to most customers and 5 gigabits shared. 26 GHz in Europe & 28 GHz in the U.S. are by far the most common.
  • Low and mid-band: uses 4G hardware and “New Radio” software. It is 60-80% less capable on average than millimetre wave and very similar in performance to 4G TD-LTE. 3.3 GHz – 4.2 GHz is by far the most important band.

To begin, a few examples.

5G leaders are deploying millimetre wave

Verizon’s is arguably currently the most advanced 5G network in the world. Perhaps most surprisingly, the “smart build” is keeping costs so low capital spending is coming down. Verizon’s trials found millimetre wave performance much better than expected. In some cases, 5G capacity allowed reducing the number of cells.

Verizon will sell fixed wireless outside its incumbent territory. It has ~80 million customers out of district. Goldman Sachs estimates it will add 8 million fixed wireless by 2023 and more than pay for the buildout.

Verizon CEO Hans Vestberg says he believes mmWave capacity will allow very attractive offerings that will win customers away from the competition.

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

What are the other 5G leaders doing?

Telefónica Deutschland has similar plans, hoping to blow open the German market with mmWave to a quarter of the country. Deutsche Telekom and Vodafone are sticking with the much slower mid-band 5G and could be clobbered.

Most 5G will be slower low and mid-band formerly called 4G

80% or more of 5G worldwide the next three years will not be high-speed mmWave. Industry group 3GPP decided early in 2018 to call anything running New Radio software “5G.” In practice, almost any currently shipping 4G radio can add on the software and be called “5G.” The software was initially said to raise capacity between 10% and 52%. That’s 60% to 80% slower than mmWave. However, improved 4G technology has probably cut the difference by more than half. That’s 60% to 80% slower than mmWave. It’s been called “faux 5G” and “5G minus,” but few make the distinction. T-Mobile USA promises 5G to the entire country by 2020 without a large investment. Neville Ray is blanketing the country with 4G in 20 MHz of the new 600 MHz band. That doesn’t require many more towers due to the long reach of low frequencies. T-Mobile will add NR software for a marketing push.

In an FCC presentation, Ray said standalone T-Mobile will have a very wide 5G coverage but at relatively low speeds. Over 85% of users will connect at less than 100 megabits. The median “5G” connection will be 40-70 megabits. Some users will only get 10-20 megabits, compared to a T-Mobile average today of over 30 megabits. Aggregating 600 MHz NR with other T-Mobile bands now running LTE would be much faster but has not been demonstrated.

While attesting to the benefits of the T-Mobile-Sprint deal, Neville claimed that using Sprint spectrum at 2500 MHz and 11,000 Sprint towers will make a far more robust offering by 2024. 10% of this would be mmWave.

In the final section of this report, I discuss 5G smart strategy: “5G” is a magic marketing term. It will probably sell well even if 4G speeds are similar. The improved sales can justify a higher budget.

T-Mobile Germany promises nationwide 5G by 2025. That will be 3.5 GHz mid-band, probably using 100 MHz of spectrum. Germany has just set aside 400 MHz of spectrum at 3.5 GHz. DT, using 100 MHz of 3.5 GHz, will deliver 100–400 megabit downloads to most.

100–400 megabits is faster than much of T-Mobile’s DSL. It soon will add fixed mobile in some rural areas. In addition, T-Mobile is selling a combined wireless and DSL router. The router uses the DSL line preferably but can also draw on the wireless when the user requires more speed.

China has virtually defined itself as a 5G leader by way of its government’s clear intent for the operators. China Mobile plans two million base stations running 2.5 GHz, which has much better reach than radio in the 3.5 GHz spectrum. In addition, the Chinese telcos have been told to build a remarkable edge network. Minister Miao Wei wants “90% of China within 25 ms of a server.” That’s extremely ambitious but the Chinese have delivered miracles before. 344 million Chinese have fibre to the home, most built in four years.

Telus, Canada’s second incumbent, in 2016 carefully studied the coming 5G choices. The decision was to focus capital spending on more fibre in the interim. 2016 was too early to make 5G plans, but a strong fibre network would be crucial. Verizon also invested heavily in fibre in 2016 and 2017, which now is speeding 5G to market. Like Verizon, Telus sees the fibre paying off in many ways. It is doing fibre to the home, wireless backhaul, and service to major corporations. CEO Darren Entwistle in November 2018 spoke at length about its future 5G, including the importance of its large fibre build, although he hasn’t announced anything yet.

There is a general principle that if it’s too early to invest in 5G, it’s a good idea to build as much fibre as you can in the interim.

Benefits of 5G technology

  • More broadband capacity and speed. Most of the improvement in capacity comes from accessing more bandwidth through carrier aggregation, and many antenna MIMO. Massive MIMO has shipped as part of 4G since 2016 and carrier aggregation goes back to 2013. All 5G phones work on 4G as well, connecting as 4G where there is no 5G signal.
  • Millimetre wave roughly triples capacity. Low and mid-band 5G runs on the same hardware as 4G. The only difference to 4G is NR software, which adds only modestly to capacity.
  • Drastically lower cost per bit. Verizon CEO Lowell McAdam said, “5G will deliver a megabit of service for about 1/10th of what 4G does.”
  • Reduced latency. 1 ms systems will mostly only be in the labs for several more years, but Verizon’s and other systems deliver speed from the receiver to the cell of about 10 milliseconds. For practical purposes, latency should be considered 15 ms to 50 ms and more, unless and until large “edge Servers” are installed. Only China is likely to do that in the first three years.

The following will have a modest effect, at most, in the next three years: Autonomous cars, remote surgery, AR/VR, drones, IoT, and just about all the great things promised beyond faster and cheaper broadband. Some are bogus, others not likely to develop in our period. 5G leaders will need to capitalise on near-term benefits.

Contents:

  • Executive Summary
  • Some basic timelines
  • What will 5G deliver?
  • What will 5G be used for?
  • Current plans reviewed in the report
  • Introduction
  • What is 5G?
  • The leaders are deploying millimetre wave
  • Key dates
  • What 5G and advanced 4G deliver
  • Six things to know
  • Six myths
  • 5G “Smart Build” brings cost down to little more than 4G
  • 5G, Edge, Cable and IoT
  • Edge networks in 5G
  • “Cable is going to be humongous” – at least in the U.S.
  • IoT and 5G
  • IoT and 5G: Does anyone need millions of connections?
  • Current plans of selected carriers (5G leaders)
  • Who’s who
  • Phone makers
  • The system vendors
  • Chip makers
  • Spectrum bands in the 5G era
  • Millimetre wave
  • A preview of 5G smart strategies
  • How can carriers use 5G to make more money?
  • The cold equations of growth

Figures:

  • Figure 1: 20 years of NTT DOCOMO capex
  • Figure 2: Verizon 5G network plans
  • Figure 3: Qualcomm’s baseband chip and radio frequency module
  • Figure 4: Intel 5G chip – Very limited 5G production capability until late 2019
  • Figure 5: Overview of 5G spectrum bands
  • Figure 6: 5G experience overview
  • Figure 7: Cisco VNI forecast of wireless traffic growth between 2021–2022

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

NFV Deployment Tracker: Global review and update

Welcome to The NFV Deployment Tracker!

This report is the fourth analytical report in the ‘NFV Deployment Tracker’ series and is intended as an accompaniment to the third update of the Tracker Excel spreadsheet (to the end of June 2018).

The update extends the coverage of the Tracker worldwide: adding a comprehensive set of data on live, commercial deployments of NFV and SDN in the African, Latin American and Middle East markets to the existing data set on Asia-Pacific, Europe and North America. In addition, the spreadsheet contains updated and expanded data on deployments in the latter regions.

The expansion of the Tracker’s coverage worldwide presents an opportunity to gain an overview of global SDN and NFV development and deployment trends, and to assess the prospects for the technologies, and the services based on them, going forward.

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

Previous editions and other NFV / SDN research

Scope of information provided by the Tracker

The data in the NFV Deployment Tracker is sourced primarily from public-domain information such as telco and vendor press releases and reliable press reports regarding successfully completed deployments and the launch of live, commercial services based on virtualised network functions (VNFs) or SDN. We have also obtained some confidential information direct from operators, which we are unable to present in the detailed break-down of deployments by operator. However, this information has been added to an aggregated data set, which is also provided in the spreadsheet.

The data is therefore limited to verified deployments: production implementations of NFV and SDN powering live services, where we can be confident that the data on the VNFs and IT components involved is accurate and – as far as possible – up to date. We also include some information on deployments planned to be completed by the end of 2017 or by a date as yet unknown, where the information is in the public domain, and where the size and scope of the deployments merit their inclusion.

Contents:

  • Executive Summary
  • The volume and pace of SDN / NFV deployments continues to grow…
  • …but some fundamental challenges remain
  • The focus of deployments varies region by region
  • Operator trends
  • Vendor trends
  • Conclusion
  • Introduction
  • Welcome to the third update of the ‘NFV Deployment Tracker’
  • Scope, definitions and importance of the data
  • Analysis of the global data set
  • Constant growth – but SDN / NFV deployment is far from universal
  • Asia-Pacific ahead on number of deployments despite a slowdown in 2018
  • SD-WAN, SDN, core network functions and orchestration have driven the growth in 2018
  • Operator trends: Leading players rack up the deployments, leaving others lagging far behind
  • Vendor trends: a few major players dominate the scene – but telcos continue to look for alternatives
  • Conclusion 

Figures:

  • Figure 1: Growth in the number of SDN / NFV deployments per year, 2012 to June 2018
  • Figure 2: Breakdown of total deployments by region, 2012 to June 2018
  • Figure 3: Deployments by region, 2014 to 2018
  • Figure 4: Global deployments by higher-level category, 2014 to 2018
  • Figure 5: Deployments in Europe by leading category, 2014 to 2018
  • Figure 6: Asia-Pacific deployments by higher-level category, 2014 to 2018
  • Figure 7: Deployments in North America by leading categories, 2014 to 2018
  • Figure 8: Global deployments of leading VNFs and functional components, 2014 to 2018
  • Figure 9: Total deployments of leading VNFs and functional components, Middle East
  • Figure 10: Leading VNFs and functional components, Latin America
  • 1Figure 11: Leading operators by number of deployments, global
  • Figure 12:  Leading vendors by number of deployments, global
  • Figure 13: Leading vendors by deployment category 25

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

NFV Deployment Tracker: Asia takes the lead

Introduction

Welcome to the second update of the ‘NFV Deployment Tracker’

This report is the third analytical report in the ‘NFV Deployment Tracker’ series and is intended as an accompaniment to the second update of the Tracker Excel spreadsheet (dated March 2018).

The update provides a comprehensive set of data on live, commercial deployments of NFV and SDN in the Asia-Pacific market. Under ‘Asia-Pacific’, we include all of the countries of Central, Southern and South-East Asia, along with Oceania. In addition to the new set of data for Asia-Pacific, the spreadsheet contains updated and revised data on deployments in the European and North American regions.

In June 2018, the data set and analysis will be extended to all other regions worldwide, with the aim of providing the industry’s most comprehensive, authoritative source of information on live deployments of NFV and SDN.

Scope, definitions and importance of the data

Detailed explanation of the scope of the information provided in the Tracker, definitions of terms (including how we define a live ‘deployment’ and definitions of frequently used NFV / SDN acronyms) and an account of why we think it is important to track the progress of NFV / SDN are provided in the first analytical report of the series – so we will not repeat them here.

Analysis of the Asia-Pacific data set

Overall data and trends: Asia-Pacific is the largest global market for NFV

We have gathered data on 102 live, commercial deployments of NFV and SDN in Asia-Pacific between 2012 and 2018. These were completed by 33 telcos, including all of the major operators in China, Japan, South Korea and Australia. Deployments have been more limited in India: seven in total, including two global implementations by Tata Communications. Altogether, the data includes information on 203 known Virtual Network Functions (VNFs), functional sub-components and supporting infrastructure elements that have formed part of these deployments.

This means that Asia-Pacific is the largest market for NFV and SDN, measured purely in terms of number of deployments. The Asia-Pacific totals outstrip the updated numbers for both Europe (89 deployments and 182 VNFs / functional components) and North America (62 deployments and 126 VNFs / functional components). The number of operators that have completed deployments is also higher than that in Europe or North America.

Contents:

  • Executive Summary
  • Asia-Pacific is the leading global SDN / NFV market
  • Introduction
  • Welcome to the second update of the ‘NFV Deployment Tracker’
  • Scope, definitions and importance of the data
  • Analysis of the Asia-Pacific data set
  • Overall data and trends: Asia-Pacific is the largest global market for NFV
  • SDN, SD-WAN and core network functions have driven the growth
  • Operator trends: Innovators lead the way, closely followed by the Chinese giants
  • Vendor trends: SD-WAN and vCPE vendors lead the way
  • Conclusion

Figures:

  • Figure 1: Total NFV and SDN deployments in Asia-Pacific, 2012 to 2018
  • Figure 2: Asia-Pacific deployments by higher-level category, 2014 to 2018
  • Figure 3: European deployments by higher-level category, 2014 to 2018
  • Figure 4: North American deployments by higher-level category, 2014 to 2018
  • Figure 5: Leading VNFs and functional components deployed in Asia-Pacific
  • Figure 6: Leading Asia-Pacific operators by number of NFV / SDN deployments
  • Figure 7: Leading vendors by number of deployments