Telco edge computing: Turning vision into practice

The emerging opportunity for edge compute

There is ongoing interest in the telecoms industry about edge computing. The key rationale behind this is that telcos – through their distributed network assets – are in a unique position to push workloads closer to devices, reducing latency and/or data volumes over to the cloud, and thereby enabling new experiences and use cases, while enhancing existing ones.

After years of centralising workloads in the public cloud there is complementary demand emerging for more distributed compute. This is good news for telcos as it shows that the time is ripe for them to turn their ambition to edge computing. Telcos can exploit their own connectivity, unique network APIs and an existing distributed real-estate. Telcos are in a unique position to play a strong role in distributed and edge computing ecosystems.

Telcos’ excitement around edge is fuelled by new differentiation and revenue opportunities leveraging the dynamic application developer ecosystem which hitherto has been dominated by ever more sophisticated and technically advanced public clouds and proofs-of-concept (POCs). Furthermore, underlying trends in cloud computing are increasingly promising for distributed (edge) computing:

  • Hybrid and multi-cloud models and technologies will continue to facilitate more distributed compute scenarios beyond hyperscale-only and on-premise-only.
  • Lightweight compute models will enable the deployment of cloud-workloads on a smaller footprint (e.g. train AI models in the cloud and execute them at the edge, such as in a smartphone or a connected car). For example, containers and “serverless” compute models make it possible to run workloads more efficiently and elastically than virtual machines.
  • The adoption of more platform-agnostic deployment models (such as containers) will facilitate the shifting and moving of workloads within distributed and edge cloud environments.
  • Proliferation of edge gateways and IoT devices will drive processing and analytics outside the datacentre and closer to the customer (premises).
  • Regarding security, a more distributed computing model is well-suited to defending against certain types of attacks (e.g. DDOS). Furthermore, if/when breaches do occur, these can be quarantined to an edge “cloudlet”, limiting the potential damage and undermining the economics of an attack.

Our findings in this report are informed by a research programme STL Partners has conducted since January 2018, supported by and in cooperation with Aricent. For this research, STL Partners has conducted interviews with both telcos and technology companies, globally about their views and current efforts related to edge computing. Overall, the research forms part of STL Partners’ ongoing research work and consulting assignments around telco edge cloud.

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

Key questions arising for telcos

Notwithstanding the strategic opportunity, telcos face some big questions in formulating edge initiatives. These include:

“What is the business case for telco edge – where is the money?”

“Will massive demand for low-latency compute drive demand from core/central to edge compute?”

“How can we compete with the big cloud players – won’t they expand and control the edge too?”

“How should we play in Enterprise edge – should we offer edge services on customer premises?”

“How can we architect and charge for different edge services – those requiring expensive, specialised hardware for accelerated computing to process machine learning/AI workloads?”

“What edge services should we offer and through what distribution channels?”

These are (real examples of) questions that telcos must address in defining and delivering edge services. This report provides a framework to tackle these (and other) questions in a structured way. We will revisit these questions (and the answers) throughout the report.

Enter your details below to request an extract of the report

var MostRecentReportExtractAccess = “Most_Recent_Report_Extract_Access”;
var AllReportExtractAccess = “All_Report_Extract_Access”;
var formUrl = “https://go.stlpartners.com/l/859343/2022-02-16/dg485”;
var title = encodeURI(document.title);
var pageURL = encodeURI(document.location.href);
document.write(‘‘);

IoT and blockchain: There’s substance behind the hype

Introduction

There is currently a lot of market speculation about blockchain and its possible use-cases, including how it can be used in the IoT ecosystem.

This short report identifies three different reasons why blockchain is an attractive technology to use in IoT solutions, and how blockchain can help operators move up the IoT value chain by enabling new business models.

This report leverages research from the following recent STL publications:

Enter your details below to request an extract of the report


The IoT ecosystem is evolving rapidly, and we are moving towards a hyper-connected and automated future…

Blockchain IoT

Source: STL Partners

This future vision won’t be possible unless IoT devices from different networks can share data securely. There are three things that make blockchain an attractive technology to help overcome this challenge and enable IoT ecosystems:

  1. It creates a tamper-proof audit trails
  2. It enables a distributed operating model
  3. It is open-source

Contents:

  • Introduction
  • IoT is not a quick win for operators
  • Can blockchain help?
  • The IoT ecosystem is evolving rapidly…
  • The future vision won’t be possible unless IoT devices from different networks can share data securely
  • Application 1: Enhancing IoT device security
  • Use-case 1: Protecting IoT devices with blockchain and biometric data
  • Use-case 2: Preventing losses in the global freight and logistics industry
  • Application 2: Enabling self-managing device-to-device networks
  • Use-case 1: Enabling device-to-device payments
  • Use-case 2: Granting location-access through smart locks
  • Use-case 3: Enabling the ‘sharing economy’
  • Blockchain is not a silver bullet
  • Blockchain in operator IoT strategies

Enter your details below to request an extract of the report

Connected Home: Telcos vs Google (Nest, Apple, Samsung, +…)

Introduction 

On January 13th 2014, Google announced its acquisition of Nest Labs for $3.2bn in cash consideration. Nest Labs, or ‘Nest’ for short, is a home automation company founded in 2010 and based in California which manufactures ‘smart’ thermostats and smoke/carbon monoxide detectors. Prior to this announcement, Google already had an approximately 12% equity stake in Nest following its Series B funding round in 2011.

Google is known as a prolific investor and acquirer of companies: during 2012 and 2013 it spent $17bn on acquisitions alone, which was more than Apple, Microsoft, Facebook and Yahoo combined (at $13bn) . Google has even been known to average one acquisition per week for extended periods of time. Nest, however, was not just any acquisition. For one, whilst the details of the acquisition were being ironed out Nest was separately in the process of raising a new round of investment which implicitly valued it at c. $2bn. Google, therefore, appears to have paid a premium of over 50%.

This analysis can be extended by examining the transaction under three different, but complementary, lights.

Google + Nest: why it’s an interesting and important deal

  • Firstly, looking at Nest’s market capitalisation relative to its established competitors suggests that its long-run growth prospects are seen to be very strong

At the time of the acquisition, estimates placed Nest as selling 100k of its flagship product (the ‘Nest Thermostat’) per month . With each thermostat retailing at c. $250 each, this put its revenue at approximately $300m per annum. Now, looking at the ratio of Nest’s market capitalisation to revenue compared to two of its established competitors (Lennox and Honeywell) tells an interesting story:

Figure 1: Nest vs. competitors’ market capitalisation to revenue

 

Source: Company accounts, Morgan Stanley

Such a disparity suggests that Nest’s long-run growth prospects, in terms of both revenue and free cash flow, are believed to be substantially higher than the industry average. 
  • Secondly, looking at Google’s own market capitalisation suggests that the capital markets see considerable value in (and synergies from) its acquisition of Nest

Prior to the deal’s announcement, Google’s share price was oscillating around the $560 mark. Following the acquisition, Google’s share price began averaging closer to $580. On the day of the announcement itself, Google’s share price increased from $561 to $574 which, crucially, reflected a $9bn increase in market capitalisation . In other words, the value placed on Google by the capital markets increased by nearly 300% of the deal’s value. This is shown in Figure 2 below:

Figure 2: Google’s share price pre- and post-Nest acquisition

 

Source: Google Finance

This implies that the capital markets either see Google as being well positioned to add unique value to Nest, Nest as being able to strongly complement Google’s existing activities, or both.

  • Thirdly, viewing the Nest acquisition in the context of Google’s historic and recent M&A activity shows both its own specific financial significance and the changing face of Google’s acquisitions more generally

At $3.2bn, the acquisition of Nest represents Google’s second largest acquisition of all time. The largest was its purchase of Motorola Mobility in 2011 for $12.5bn, but Google has since reached a deal to sell the majority of its assets (excluding its patent portfolio) to Lenovo for $2.9bn. In other words, Nest is soon to become Google’s largest active, inorganic investment. Google’s ten largest acquisitions, as well as some smaller but important ones, are shown in Figure 3 below:

Figure 3: Selected acquisitions by Google, 2003-14

Source: Various

Beyond its size, the Nest acquisition also continues Google’s recent trend of acquiring companies seemingly less directly related to its core business. For example, it has been investing in artificial intelligence (DeepMind Technologies), robotics (Boston Dynamics, Industrial Perception, Redwood Robotics) and satellite imagery (Skybox Imaging).

Three questions raised by Google’s acquisition of Nest

George Geis, a professor at UCLA, claims that Google develops a series of metrics at an early stage which it later uses to judge whether or not the acquisition has been successful. He further claims that, according to these metrics, Google on average rates two-thirds of its acquisitions as successful. This positive track record, combined with the sheer size of the Nest deal, suggests that the obvious question here is also an important one:

  • What is Nest’s business model? Why did Google spend $3.2bn on Nest?

Nest’s products, the Nest Thermostat and the Nest Protect (smoke/carbon monoxide detector), sit within the relatively young space referred to as the ‘connected home’, which is defined and discussed in more detail here. One natural question following the Nest deal is whether Google’s high-profile involvement and backing of a (leading) company in the connected home space will accelerate its adoption. This suggests the following, more general, question:

  • What does the Nest acquisition mean for the broader connected home market?

Finally, there is a question to be asked around the implications of this deal for Telcos and their partners. Many Telcos are now active in this space, but they are not alone: internet players (e.g. Google and Apple), big technology companies (e.g. Samsung), utilities (e.g. British Gas) and security companies (e.g. ADT) are all increasing their involvement too. With different strategies being adopted by different players, the following question follows naturally:

  • What does the Nest acquisition mean for telcos?

 

  • Executive Summary
  • Introduction
  • Google + Nest: why it’s an interesting and important deal
  • Three questions raised by Google’s acquisition of Nest
  • Understanding Nest and Connected Homes
  • Nest: reinventing everyday objects to make them ‘smart’
  • Nest’s future: more products, more markets
  • A general framework for connected home services
  • Nest’s business model, and how Google plans to get a return on its $3.2bn investment 
  • Domain #1: Revenue from selling Nest devices is of only limited importance to Google
  • Domain #2: Energy demand response is a potentially lucrative opportunity in the connected home
  • Domain #3: Data for advertising is important, but primarily within Google’s broader IoT ambitions
  • Domain #4: Google also sees Nest as partial insurance against IoT-driven disruption
  • Domain #5: Google is pushing into the IoT to enhance its advertising business and explore new monetisation models
  • Implications for Telcos and the Connected Home
  • The connected home is happening now, but customer experience must not be overlooked
  • Telcos can employ a variety of monetisation strategies in the connected home
  • Conclusions

 

  • Figure 1: Nest vs. competitors’ market capitalisation relative to revenue
  • Figure 2: Google’s share price, pre- and post-Nest acquisition
  • Figure 3: Selected acquisitions by Google, 2003-14
  • Figure 4: The Nest Thermostat and Protect
  • Figure 5: Consumer Electronics vs. Electricity Spending by Market
  • Figure 6: A connected home services framework
  • Figure 7: Nest and Google Summary Motivation Matrix
  • Figure 8: Nest hardware revenue and free cash flow forecasts, 2014-23
  • Figure 9: PJM West Wholesale Electricity Prices, 2013
  • Figure 10: Cooling profile during a Rush Hour Rewards episode
  • Figure 11: Nest is attempting to position itself at the centre of the connected home
  • Figure 12: US smartphone market share by operating system (OS), 2005-13
  • Figure 13: Google revenue breakdown, 2013
  • Figure 14: Google – Generic IoT Strategy Map
  • Figure 15: Connected device forecasts, 2010-20
  • Figure 16: Connected home timeline, 1999-Present
  • Figure 17: OnFuture EMEA 2014: The recent surge in interest in the connected home is due to?
  • Figure 18: A spectrum of connected home strategies between B2C and B2B2C (examples)
  • Figure 19: Building, buying or partnering in the connected home (examples)
  • Figure 20: Telco 2.0™ ‘two-sided’ telecoms business model