MWC 2023: You are now in a new industry

The birth of a new sector: “Connected Technologies”

Mobile World Congress (MWC) is the world’s biggest showcase for the mobile telecoms industry. MWC 2023 marked the second year back to full scale after COVID disruptions. With 88k visitors, 2,400 exhibitors and 1,000 speakers it did not quite reach pre-COVID heights, but remained an enormous scale event. Notably, 56% of visitors came from industries adjacent to the core mobile ecosystem, reflecting STL’s view that we are now in a new industry with a diverse range of players delivering connected technologies.

With such scale It can be difficult to find the significant messages through the noise. STL’s research team attended the event in full force, and we each focused on a specific topic. In this report we distil what we saw at MWC 2023 and what we think it means for telecoms operators, technology companies and new players entering the industry.

Enter your details below to download an extract of the report

STL Partners research team at MWC 2023

STL-Partners-MWC23-research-team

The diversity of companies attending and of applications demonstrated at MWC23 illustrated that the business being conducted is no longer the delivery of mobile communications. It is addressing a broader goal that we’ve described as the Coordination Age. This is the use of connected technologies to help a wide range of customers make better use of their resources.

The centrality of the GSMA Open Gateway announcement in discussions was one harbinger of the new model. The point of the APIs is to enable other players to access and use telecoms resources more automatically and rapidly, rather than through lengthy and complex bespoke processes. It starts to open many new business model opportunities across the economy. To steal the words of John Antanaitis, VP Global Portfolio Marketing at Vonage, APIs are “a small key to a big door”.

Other examples from MWC 2023 underlining the transition of “telecommunications” to a sector with new boundaries and new functions include:

  • The centrality of ecosystems and partnerships, which fundamentally serve to connect different parts of the technology value chain.
  • The importance of sustainability to the industry’s agenda. This is about careful and efficient use of resources within the industry and enabling customers to connect their own technologies to optimise energy consumption and their uses of other scarce resources such as land, water and carbon.
  • An increasing interest and experimentation with the metaverse, which uses connected technologies (AR/VR, high speed data, sometimes edge resources) to deliver a newly visceral experience to its users, in turn delivering other benefits, such as more engaging entertainment (better use of leisure time and attention), and more compelling training experiences (e.g. delivering more realistic and lifelike emergency training scenarios).
  • A primary purpose of telco cloud is to break out the functions and technologies within the operators and network domains. It makes individual processes, assets and functions programmable – again, linking them with signals from other parts of the ecosystem – whether an external customer or partner or internal users.
  • The growing dialogues around edge computing and private networks –evolving ways for enterprise customers to take control of all or part of their connected technologies.
  • The importance of AI and automation, both within operators and across the market. The nature of automation is to connect one technology or data source to another. An action in one place is triggered by a signal from another.

Many of these connecting technologies are still relatively nascent and incomplete at this stage. They do not yet deliver the experiences or economics that will ultimately make them successful. However, what they collectively reveal is that the underlying drive to connect technologies to make better use of resources is like a form of economic gravity. In the same way that water will always run downhill, so will the market evolve towards optimising the use of resources through connecting technologies.

Table of contents

  • Executive Summary
    • The birth of a new sector: ‘Connected technologies’
    • Old gripes remain
    • So what if you are in a new industry?
    • You might like it
    • How to go from telco to connected techco
    • Next steps
  • Introduction
  • Strategy: Does the industry know where it’s going?
    • Where will the money come from?
    • Telcos still demanding their “fair share”, but what’s fair, or constructive?
    • Hope for the future
  • Transformation leadership: Ecosystem practices
    • Current drivers for ecosystem thinking
    • Barriers to wider and less linear ecosystem practices
    • Conclusion
  • Energy crisis sparks efficiency drive
    • Innovation is happening around energy
    • Orange looks to change consumer behaviour
    • Moves on measuring enablement effects
    • Key takeaways
  • Telco Cloud: Open RAN is important
    • Brownfield open RAN deployments at scale in 2024-25
    • Acceleration is key for vRAN workloads on COTS hardware
    • Energy efficiency is a key use case of open RAN and vRAN
    • Other business
    • Conclusion
  • Consumer: Where are telcos currently focused?
    • Staying relevant: Metaverse returns
    • Consumer revenue opportunities: Commerce and finance
    • Customer engagement: Utilising AI
  • Enterprise: Are telcos really ready for new business models?
    • Metaverse for enterprise: Pure hype?
    • Network APIs: The tech is progressing
    • …But commercial value is still unclear
    • Final takeaways:
  • Private networks: Coming over the hype curve
    • A fragmented but dynamic ecosystem
    • A push for mid-market adoption
    • Finding the right sector and the right business case
  • Edge computing: Entering the next phase
    • Telcos are looking for ways to monetise edge
    • Edge computing and private networks – a winning combination?
    • Network APIs take centre stage
    • Final thoughts
  • AI and automation: Opening up access to operational data
    • Gathering up of end-to-end data across multiple-domains
    • Support for network automations
    • Data for external use
    • Key takeaways

Enter your details below to download an extract of the report

Telco Cloud Deployment Tracker: Deploying NFs on public cloud without losing control

In this update, we present a review of telco cloud deployments for the whole of 2022 and discuss trends that will shape the year ahead. Fewer deployments than expected were completed in 2022. The main reason for this was a delay in previously announced 5G Standalone (SA) core roll-outs, for reasons we have analysed in a previous report. However, we expect these deployments to be largely completed in 2023. 

We also review deployments of NFs on the public cloud in 2022. While few in number, they are significant in scope, and illustrate ways in which telcos of different types can deploy NFs on public cloud while retaining control over the management and ongoing development of those NFs.

Enter your details below to download an extract of the report

CNFs on the public cloud: Recent deployments illustrate how to avoid hyperscaler lock-in

Few telcos have yet deployed critical network functions on the hyperscale cloud, as discussed in this report. However, significant new deployments did go live in 2022, as did tests and pilots, involving all three hyperscalers:​

Recent deployments and trials of CNFs on public cloud

Source: STL Partners

In our recently published Telco Cloud Manifesto 2.0, we argued that telcos thinking of outsourcing telco cloud (i.e. both VNFs/CNFs and cloud infrastructure) to hyperscalers should not do so as a simple alternative to evolving their own software development skills and cloud operational processes. In order to avoid a potentially crippling dependency on their hyperscaler partners, it is essential for operators to maintain control over the development and orchestration of their critical NFs and cloud infrastructure while delivering services across a combination of the private cloud and potentially multiple public clouds. In contrast to a simple outsourcing model, the deployments on public cloud in 2022 reflect different modes of exploiting the resources and potential of the cloud while maintaining control over NF development and potential MEC use cases. The telcos involved retain control because only specific parts of the cloud stack are handed over to the hyperscale platform; and, within that, the telcos also retain control over variable elements such as orchestration, NF development, physical infrastructure or the virtualisation layer.

In this report, we discuss the models which the telcos above have followed to migrate their network workloads onto the public cloud and how this move fits their overall virtualisation strategies.

Previous telco cloud tracker releases and related research

Enter your details below to download an extract of the report

The Telco Cloud Manifesto 2.0

Nearly two years on from our first Telco Cloud Manifesto published in March 2021, we are even more convinced that going through the pain of learning how to orchestrate and manage network workloads in a cloud-native environment is essential for telcos to successfully create new business models, such as Network-as-a-Service in support of edge compute applications.

Since the first Manifesto, hyperscalers have emerged as powerful partners and enablers for telcos’ technology transformation. But telcos that simply outsource to hyperscalers the delivery and management of their telco cloud, and of the multi-vendor, virtualised network functions that run on it, will never realise the true potential of telco cloudification. By contrast, evolving and maintaining an ability to orchestrate and manage multi-vendor, virtualised network functions end-to-end across distributed, multi-domain and multi-vendor infrastructure represents a vital control point that telcos should not surrender to the hyperscalers and vendors. Doing so could relegate telcos to a role as mere physical connectivity and infrastructure providers helping to deliver services developed, marketed and monetised by others.

In short, operators must take on the ‘workload’ of transforming into and acting as cloud-centric organisations before they shift their ‘workloads’ to the hyperscale cloud. In this updated Manifesto, we outline why, and what telcos at different stages of maturity should prioritise.

Two developments have taken place since the publication of our first manifesto that have changed the terms on which telcos are addressing network cloudification:

  • Hyperscale cloud providers have increasingly developed capabilities and commercial offers in the area of telco cloud. To telcos uncertain about the strategy and financial implications of the next phase of their investments, the hyperscalers appear to offer a shortcut to telco cloud: the possibility of avoiding doing all the hard yards of developing the private telco cloud, and of evolving the internal skills and processes for deploying and managing multi-vendor VNFs / CNFs over it. Instead, the hyperscalers offer the prospect of getting telco cloud and VNFs / CNFs on an ‘as-a-Service’ basis – fundamentally like any other cloud service.
  • In April 2021, DISH announced it would build its greenfield 5G network with AWS providing much of the virtual infrastructure layer and all of the physical cloud infrastructure. In June 2021, AT&T sold its private telco cloud platform to Microsoft Azure. In both instances, the telcos involved are now deploying mobile core network functions and, in DISH’s case, all of the software-based functions of its on a hyperscale cloud. These events appear superficially to set an example validating the idea of outsourcing telco cloud to the hyperscalers. After all, AT&T had previously been a champion of the DIY approach to telco cloud but now looked as though it had thrown in the towel and gone all in with outsourcing its cloud from Azure.

Two main questions arise from these developments, which we address in detail in this second Manifesto:

  • Should telcos embarked or embarking on a Pathway 2 strategy outsource their telco cloud infrastructure and procure their critical network functions – in whole or in part – from one or more hyperscalers, on an as-a-Service basis?
  • What is the broader significance of AT&T’s and DISH’s moves? Does it represent the logical culmination of telco cloudification and, if so, what are the technological and business-model characteristics of the ‘infrastructure-independent, cloud-native telco’, as we define this new Pathway 4? Finally, is this a model that all Pathway 3 players – and even all telcos per se – should ultimately seek to emulate?

In this second Manifesto, we also propose an updated version of our pathways describing telco network cloudification strategies for different sizes and types of telco to implement telco cloud. We now have four pathways (we had three in the original Manifesto), as illustrated in the figure below.

The four telco cloud deployment pathways in STL’s Telco Cloud Manifesto 2.0

Source: STL Partners, 2023

Existing subscribers can download the Manifesto at the top of this page. Everyone else, please go here.

If you wish to speak to us about our new Manifesto, please book a call.

Table of contents

  • Executive Summary
    • Recommendations
  • Pathway 1: No way back
    • Two constituencies at operators: Cloud sceptics and cloud advocates
  • Pathway 2: Hyperscalers – friend or foe?
    • Cloud-native network functions are a vital control point telcos must not relinquish
  • Pathway 3: Build own telco cloud competencies before deploying on public cloud
    • AT&T and DISH are important proof points but not applicable to the industry as a whole
    • But telcos will not realise the full benefits of telco cloud unless they, too, become software and cloud businesses
  • Pathway 4: The path to Network-as-a-Service
    • Pathway 4 networks will enable Network-as-a-Service
  • Conclusion: Mastery of cloud-native is key for telcos to create value in the Coordination Age

Related research

Our telco cloud research aligned to this topic includes:

 

Telco Cloud Deployment Tracker: Will vRAN eclipse pure open RAN?

Is vRAN good enough for now?

In this October 2022 update to STL Partners’ Telco Cloud Deployment Tracker, we present data and analysis on progress with deployments of vRAN and open RAN. It is fair to say that open RAN (virtualised AND disaggregated RAN) deployments have not happened at the pace that STL Partners and many others had forecast. In parallel, some very significant deployments and developments are occurring with vRAN (virtualised NOT disaggregated RAN). Is open RAN a networking ideal that is not yet, or never will be, deployed in its purest form?

In our Telco Cloud Deployment Tracker, we track deployments of three types of virtualised RAN:

  1. Open RAN / O-RAN: Open, disaggregated, virtualised / cloud-native, with baseband (BU) functions distributed between a Central Unit (CU: control plane functions) and Distributed Unit (DU: data plane functions)
  2. vRAN: Virtualised and distributed CU/DU, with open interfaces but implemented as an integrated, single-vendor platform
  3. Cloud RAN (C-RAN): Single-vendor, virtualised / centralised BU, or CU only, with proprietary / closed interfaces

Cloud RAN is the most limited form of virtualised RAN: it is based on porting part or all of the functionality of the legacy, appliance-based BU into a Virtual Machine (VM). vRAN and open RAN are much more significant, in both technology and business-model terms, breaking open all parts of the RAN to more competition and opportunities for innovation. They are also cloud-native functions (CNFs) rather than VM-based.

Enter your details below to request an extract of the report

2022 was meant to be the breakthrough year for open RAN: what happened?

  • Of the eight deployments of open RAN we were expecting to go live in 2022 (shown in the chart below), only three had done so by the time of writing.
  • Two of these were on the same network: Altiostar and Mavenir RAN platforms at DISH. The other was a converged Parallel Wireless 2G / 3G RAN deployment for Orange Central African Republic.
  • This is hardly the wave of 5G open RAN, macro-network roll-outs that the likes of Deutsche Telekom, Orange, Telefónica and Vodafone originally committed to for 2022. What has gone wrong?
  • Open RAN has come up against a number of thorny technological and operational challenges, which are well known to open RAN watchers:
    • integration challenges and costs
    • hardware performance and optimisation
    • immature ecosystem and unclear lines of accountability when things go wrong
    • unproven at scale, and absence of economies of scale
    • energy efficiency shortcomings
    • need to transform the operating model and processes
    • pressured 5G deployment and Huawei replacement timelines
    • absence of mature, open, horizontal telco cloud platforms supporting CNFs.
  • Over and above these factors, open RAN is arguably not essential for most of the 5G use cases it was expected to support.
  • This can be gauged by looking at some of the many open RAN trials that have not yet resulted in commercial deployments.

Global deployments of C-RAN, vRAN and open RAN, 2016 to 2023

Image shows global deployments of C-RAN, vRAN and open RAN, 2016 to 2023

Source: STL Partners

Previous telco cloud tracker releases and related research

Enter your details below to request an extract of the report

Building a green network: Sustainability game changers

Carbon emissions: At the heart of the corporate strategy for SPs

At the core of all service provider businesses is their network. Customers expect from these networks a service which is fast, reliable, customisable and cost-effective. For service providers to continue to meet these expectations, they are investing in new technologies that help to improve their performance. This investment includes but is not limited to 5G (SA) core, cloudification, AI and automation capabilities, edge computing, vRAN and O-RAN, fibre to the home and more.

However, at the same time as making these network advancements, service providers are also focused on reducing their carbon emissions. Never before has this been such an important part of the corporate strategy of many large companies, not the least the service providers. Becoming greener has become a top priority politically, economically and socially and is increasingly encompassing all parts of the business, from reducing the use of electricity to trying to increase the amount of recycled and refurbished equipment in use.

In many instances efforts to become more sustainable have been accelerated because of the wave of commitments from service providers to become net-zero companies in the next 10-30 years.1 Achieving these commitments will require changes in operating practices across service providers’ businesses, but particularly, changes in the way that they rollout, operate, manage, maintain and upgrade their networks.

Enter your details below to request an extract of the report

The single biggest contributor: Green networks

Figure 1 indicates why the networks are such an important element in reducing carbon emissions – because they are by far the most energy-hungry part of a service providers’ business. Last year, the Belgian service provider Proximus reported than more than 75% of their electricity consumption came from their networks.

More than 75% of Proximus’ electricity consumption last year came from its fixed and mobile networks

Green networks - Proximus electricity consumption emissions carbon

There are technological advancements that are both improving network performance and helping to reduce carbon emissions. One such of these is “Moore’s Law” – the observed phenomenon from the co-founder of Intel that while compute speed and power doubles every two years, the cost of the computers is halved. Making smaller, more powerful equipment helps to reduce the embedded carbon of a network and while we expect generally that this trend will continue, it will not be enough alone for service providers to reach their net-zero goals.

Instead, more radical action must be taken. Service providers must accelerate their efforts to prioritise sustainability just as much as performance when it comes to their networks and data centre infrastructure. In this report we discuss five key steps that could be sustainability gamechangers in building green networks. The insights from the report have largely been formed through an interview programme with service providers globally to understand their current efforts and future ambitions.

Table of Contents

  • Executive Summary
    • Five sustainability gamechangers to build a greener network
  • Introduction
    • Carbon emissions: At the heart of the corporate strategy for SPs
    • The single biggest contributor: Why the focus on green networks
  • Re-evaluate the gold standard for network KPIs
    • Impact on carbon emissions
    • Evidence of adoption by service providers
  • Develop best-in-class AI and automation capabilities
    • Impact on carbon emissions
    • Evidence of adoption by service providers
  • Simplify the network to achieve emission benefits today
    • Impact on carbon emissions
    • Evidence of adoption by service providers
  • Ensure workloads are running on green energy as much as possible
    • Impact on carbon emissions
    • Evidence of adoption by service providers
  • Target a power usage effectiveness rating of 0.5 through innovative waste heat solutions
    • Impact on carbon emissions
    • Evidence of adoption by service providers
  • Conclusion

 

Enter your details below to request an extract of the report

 

Telco Cloud Deployment Tracker: Open RAN deep dive

Telco Cloud: Open RAN is a work in progress

This report accompanies the latest release and quarterly update of STL Partners ‘Telco Cloud Deployment Tracker’ database. This contains data on deployments of VNFs (Virtual Network Functions), CNFs (cloud-native network functions) and SDN (Software Defined Networking) in the networks of the leading telcos worldwide. In this update we have added some additional categories to the database to reflect the different types of virtualised / open RAN:

  1. Open RAN / O-RAN: Fully open, disaggregated, virtualised / cloud-native, with CU / DU split
  2. vRAN: Virtualised CU/DU, with open interfaces but implemented as an integrated, single-vendor platform
  3. Cloud RAN: Single-vendor, virtualised / centralised BU, or CU only, with proprietary / closed interfaces

Cloud RAN is the most limited form of virtualised RAN: It is based on porting part or all of the functionality of the legacy, appliance-based BU into a Virtual Machine. vRAN and open RAN are much more significant, in both technology and business-model terms, breaking open all parts of the RAN to more competition and opportunities for innovation.

Accordingly, the report presents data on only open RAN and vRAN deployments however a granular analysis of each category of RAN deployment can be carried out using the Telco Cloud Tracker tool.

Access our online Telco Cloud Deployment Tracker tool here

Download the additional file for the full dataset of Telco Cloud deployments

Enter your details below to request an extract of the report

Open RAN and vRAN deployments, 2018 – 2022

Open-RAN-Deployments-Apr-2021-STL-Partners

Source: STL Partners

Open RAN and vRAN

Both Open RAN and vRAN are virtualised (with the exception of NTT DoCoMo as outlined in the report), but ‘open RAN’ implies full disaggregation of the different parts of the RAN (hardware, software and radio), and open interfaces between them. By contrast, vRAN incorporates the open interfaces but is generally deployed as a pre-integrated, single-vendor solution: hardware, software and radio supplied by the same vendor.

To date, there have been significantly more open RAN than vRAN deployments. But vRAN is emerging as a potentially competitive alternative to pure open RAN: offering the same operational benefits and – in theory – multi-vendor openness, but without the overhead of integrating components from multiple vendors, and a ‘single neck to choke’ if things go wrong. Deployments in 2020 were mostly small-scale and / or 4G, including trials which continued to carry live traffic after the trial period came to an end.

The stark contrast between 2021 and 2022 reflects a slight hiatus in commercial deployments as work intensified around integration and operational models, trials, performance optimisation, and cost economics. However, major deployments are expected in 2022, including greenfield networks 1&1 Drillisch (Germany) and DISH (US), Verizon, Vodafone UK, and MTN (Africa and ME).

Scope and content of the Tracker

The data in the latest update of our interactive tool and database covers the period up to March 2022, although reference is made in the report to events and deployments after that date. The data is drawn predominantly from public-domain information contained in news releases from operators and vendors, along with reputable industry media.

We apply the term ‘deployment’ to refer to the total set of VNFs, CNFs or SDN technology, and their associated management software and infrastructure, deployed at an operator – or at one or more of an operator’s opcos or natcos – in order to achieve a defined objective or support particular services (in the spreadsheet, we designate these as the ‘primary purpose’ of the deployment). For example, this could be:

  • to deploy a 5G standalone core
  • to launch a software-defined WAN (SD-WAN) service
  • or to construct a ‘telco cloud’ or NFV infrastructure (NFVi): a cloud infrastructure platform on which virtualised network services can be introduced and operated.

The Tracker is provided as an interactive tool containing line-by-line analysis of over 900 individual deployments of VNFs, CNFs or SDN technology, which can be used to drill down by:

  • Region where deployed
  • Operator
  • Technology vendor
  • Primary purpose
  • Type of telco cloud function deployed
  • …and more filters

Telco Cloud Trial Deployment Tracker

Take a look at the trial of our interactive tool with live, commercial deployments of VNFs, CNFs and SDN technologies worldwide

Previous telco cloud tracker releases

Each new release of the tracker is global, but is accompanied by an analytical report which focusses on trends in given regions from time to time:

 

Enter your details below to request an extract of the report

Telco Cloud Deployment Tracker: 5G standalone and RAN

Telco cloud 2.0, fuelled by 5G standalone and RAN, is on the starting grid

This report accompanies the latest release and update of STL Partners ‘Telco Cloud Deployment Tracker’ database. This contains data on deployments of VNFs (Virtual Network Functions), CNFs (cloud-native network functions) and SDN (Software Defined Networking) in the networks of the leading telcos worldwide. It builds on an extensive body of analysis by STL Partners over the past nine years on NFV and SDN strategies, technology and market developments.

Access our Telco Cloud Tracker here

Download the additional file for the full dataset of Telco Cloud deployments

Scope and content of the Tracker

The data in the latest update of our interactive tool and database covers the period up to September 2021, although reference is made in the report to events and deployments after that date. The data is drawn predominantly from public-domain information contained in news releases from operators and vendors, along with reputable industry media.

We apply the term ‘deployment’ to refer to the total set of VNFs, CNFs or SDN technology, and their associated management software and infrastructure, deployed at an operator – or at one or more of an operator’s opcos or natcos – in order to achieve a defined objective or support particular services (in the spreadsheet, we designate these as the ‘primary purpose’ of the deployment). For example, this could be:

  • to deploy a 5G standalone core
  • to launch a software-defined WAN (SD-WAN) service
  • or to construct a ‘telco cloud’ or NFV infrastructure (NFVi): a cloud infrastructure platform on which virtualised network services can be introduced and operated.

The Tracker is provided as an interactive tool containing line-by-line analysis of over 900 individual deployments of VNFs, CNFs or SDN technology, which can be used to drill down by:

  • Region where deployed
  • Operator
  • Technology vendor
  • Primary purpose
  • Category of NFV/SDN technology deployed
  • …and more filters

Enter your details below to request an extract of the report

5G standalone (SA) will hit an inflection point in 2022

5G standalone (SA) core is beginning to take off, with 19 deployments so far expected to be completed in 2022. The eventual total will be higher still, as will that of NSA core, as NSA 5G networks continue to be launched. As non-standalone (NSA) cores are replaced by SA, this will result in another massive wave of core deployments – probably from 2023/4 onwards.

Standalone 5G vs non-standalone 5G core deployments

STL-5G-standalone-core-cloud-tracker-2021

Source: STL Partners

 

Previous telco cloud tracker releases

Each new release of the tracker is global, but is accompanied by an analytical report which focusses on trends in given regions from time to time:

Enter your details below to request an extract of the report

O-RAN: What is it worth?

Introducing STL Partners’ O-RAN Market Forecast

This capex forecast is STL Partners’ first attempt at estimating the value of the O-RAN market.

  • This is STL Partners’ first O-RAN market value forecast
  • It is based on analysis of telco RAN capex and projected investment pathways for O-RAN
  • The assumptions are informed by public announcements, private discussions and the opinions of our Telco Cloud team
  • We look forward to developing it further based on client feedback

Enter your details below to request an extract of the report

What is O-RAN?

We define O-RAN as virtualised, disaggregated, open-interface architectures.

  • Our O-RAN capex forecasts cover virtualised, disaggregated, open-interface architectures in the Radio Access Network
  • They do not include vRAN or O-RAN compliant but single vendor deployments

O-RAN definition open RAN

O-RAN will account for 76% of active RAN capex by 2030

As mobile operators upgrade their 4G networks and invest in new 5G infrastructure, they can continue purchasing single vendor legacy RAN equipment or opt for multi-vendor open-standard O-RAN solutions.

Each telco will determine its O-RAN roadmap based on its specific circumstances (footprint, network evolution, rural coverage, regulatory pressure, etc)1. For the purpose of this top-level O-RAN capex forecast, STL has defined four broad pathways for transitioning from legacy RAN/vRAN to O-RAN and categorised each of the top 40 mobile operators in one of the pathways, based on their announced or suspected O-RAN strategy.

Through telcos’ projected mobile capex and the pathway categorisation, we estimate that by 2026 annual sales of O-RAN active network elements (including equipment and software) will reach USD12 billion, or 21% of all active RAN capex (excluding passive infrastructure). By 2030, these will reach USD43 billion and 76%, respectively.

Total annual O-RAN capex spend

Table of content

  • Executive summary
    • O-RAN forecast 2020-2030
    • Brownfield vs greenfield
    • Four migration pathways
  • Modelling assumptions
  • Migration pathways
    • Committed O-RAN-philes
    • NEP-otists
    • Leap-froggers
    • Industrial O-RAN
  • Next steps

 

Enter your details below to request an extract of the report

Why energy management is critical to 5G success

This paper explains why telco’s 5G roll-out, and their ability to monetise 5G, could be undermined by failing to address both the energy and wider sustainability issues that come with it. 5G must be deployed in an energy efficient manner to avoid spiralling costs and increased pressure from customers, investors and authorities. This report is aimed at the C-suite, but also at network operations and planners who are charged with deploying 5G, and the product and customer teams developing new 5G services that will create value and drive growth.

5G: Designed to spur innovation and drive growth

Much has been written (not least by STL) about 5G technology being different – both in what it does and how it does it – from previous ‘Gs’. Among other things, 5G has been conceived:

  • To enable new operating models, spur innovation and introduce an explosion of tailored connectivity and tightly coupled applications (e.g. low latency, high reliability, IoT)
  • To sustain the growth in data traffic that we have already seen with 3G and then 4G

Although many operators globally have yet to launch 5G, the roll-out is gathering pace and expected to achieve significant global coverage by 2025.

Actual data traffic volumes will move to 5G networks faster than coverage or subscriber adoption. This is due to take up of new 5G services, the nature of consumer adoption cycles (earlier adopters are heavier users) and coverage concentration in more populous areas. For example, in South Korea 5G accounted for over 30% of all mobile traffic by the end of 2020, although only 15% of subscribers were on 5G and much of the country is still not covered.

STL Partners project that global 5G traffic may overtake 4G traffic as soon as 2026.

Projected 5G traffic volumes by region

The 5G energy challenge

5G networks, done right, can limit carbon emissions and even reduce the overall energy consumption of telecoms operators, but given the number of factors at play, things will not fall into place on their own.

5G can curb excess energy use…. if done right

In terms of energy required per unit of data transmitted, 5G networks are an order of magnitude more efficient than 4G networks (much of this due to the air interface, particularly MIMO arrays packing in a greater number of antennae). 5G networks can also be more ‘energy elastic’, with energy consumption more closely tracking network use: high at peak times, largely dormant at quieter times. Cloud-native 5G standalone core and virtualised RAN will make it far easier and cheaper to adopt performance improvements in hardware and software. Open RAN will spawn new commercial and operating models in RAN sharing / wholesale / neutral hosts.

However, as the higher performance and lower cost (per GB) of 5G services will result in increased use and accelerate traffic growth, this will negate some of the efficiency gains. Furthermore, to achieve coverage, 5G networks will initially represent another overlay network requiring additional equipment and energy. Due to the higher frequencies, 5G will need more cells than 4G networks and 5G cells will typically have peak power requirements higher than 4G sites. Initially at least, this power will be additional to that supporting existing networks.

Another complication is the cloud-native nature of 5G networks which means that these will run on commercial-of-the-shelf (COTS) servers. Although potentially cheaper to buy and more efficient to run than traditional telco equipment, such servers are designed to run in ‘data-centre’ technical facilities: with more specialised cooling and power requirements. Due to the nature of networks, these servers will be distributed across many, smaller ‘edge’ facilities as well as a few big ones. And, in addition to housing servers for network functions these distributed facilities may also support edge compute resources for telco customers’ 5G-enabled applications such as AR/VR.

These distributed edge sites need to be specified, equipped, commissioned, and operated differently than in the past. Failure to do so risks inefficiencies and a jump in both embedded and ongoing emissions. To compound things, these sites will not all be greenfield ones. In many instances, they will be collocated with existing equipment, or use refurbished space in central offices, branch exchanges or older self-contained technical enclosures delivered by truck.

To reduce energy consumption and OPEX at telco sites and across the telco networks, one answer would be to begin to de-commission previous generations of mobile technology. De-commissioning 2G, 3G and 4G mobile networks would have a net beneficial effect on the carbon emissions from all the networks.

However, there are issues with de-commissioning, given that customers and applications rely on 2G and 3G even in advanced economies, smart meters being a key use for 2G, for example. There are also regional divergences: while many Asian countries have fully de-commissioned 2G and countries such as Germany aims to have fully de-commissioned 3G by 2022, by the end of 2019F 46% of consumers of mobile connectivity in Africa still used 2G.

This attests to a wider challenge when evaluating how telcos can reduce their carbon emissions in the Coordination Age: different regions are at very different stages of 5G deployment and face different challenges and solutions with regards to energy management as a whole.

Regions with different 5G take-up face different energy challenges

An added challenge with deploying 5G in a sustainable manner is that telcos cannot lose sight of resiliency and cost. Energy performance and sustainability goals need to be aligned with financial and operational objectives and incentives, not competing with them. We set out how this can be achieved in this study.

Table of Contents

  • Executive Summary
  • Preface
  • Introduction
    • The Coordination Age – a new role and purpose for telcos
    • Resource efficiency and the Coordination Age
    • 5G: Designed to spur innovation and drive growth
    • Challenge 1: The 5G energy challenge
    • Challenge 2: A rapidly changing business climate
  • How can telcos pursue growth through 5G and meet the challenges of the changing business climate?
    • Adopt energy best practice in 5G design, procurement, deployment, and operations
      • Best practice operates at multiple levels…and across them
      • Focusing action for your operator
    • Drive customers’ transition to low emissions through 5G-enabled services
      • Who to target?
      • Specific steps in driving customer efficiency through 5G
  • Conclusions and recommendations
    • Preach what you practice
    • … as well as practice what you preach
    • Recommendations for telco leadership

Building telco edge infrastructure: MEC, Private LTE and VRAN

Reality check: edge computing is not yet mature, and much is still to be decided

Edge computing is still a maturing domain. STL Partners has written extensively on the topic of edge computing over the last 4 years. Within that timeframe, we have seen significant change in terminology, attitudes and approaches from telecoms and adjacent industries to the topic area.  Plans for building telco edge infrastructure have also evolved.

Within the past twelve months, we’ve seen high profile partnerships between hyperscale cloud providers (Amazon Web Services, Microsoft and Google) and telecoms operators that are likely to catalyse the industry and accelerate route to market. We’ve also seen early movers within the industry (such as SK Telecom) developing MEC platforms to enable access to their edge infrastructure.

In the course of this report, we will highlight which domains will drive early adoption for edge, and the potential roll out we could see over the next 5 years if operators move to capitalise on the opportunity. However, to start, it is important to evaluate the situation today.

Commercial deployments of edge computing are rare, and most operators are still in the exploration phase. For many, they have not and will not commit to the roll out of edge infrastructure until they have seen evidence from early movers that it is a genuine opportunity for the industry. For even more, the idea of additional capex investment on edge infrastructure, on top of their 5G rollout plans, is a difficult commitment to make.

Where is “the edge”?

There is no one clear definition of edge computing. Depending on the world you are coming from (Telco? Application developer? Data centre operator? Cloud provider? etc.), you are likely to define it differently. In practice, we know that even within these organisations there are differences between technical and commercial teams around the concept and terminology used to describe “the edge”.

For the purposes on this paper, we will be discussing edge computing primarily from the perspective of a telecoms operator. As such, we’ll be focusing on edge infrastructure that will be rolled out within their network infrastructure or that they will play a role in connecting. This may equate to adding additional servers into an existing technical space (such as a Central Office), or it may mean investing in new microdata centres. The servers may be bought, installed and managed by the telco themselves, or this could be done by a third party, but in all cases the real estate (e.g. the physical location as well as power and cooling) is owned either by the telecoms operator, or by the enterprise who is buying an edge-enabled solution.

Enter your details below to request an extract of the report

Operators have choice and a range of options for where and how they might develop edge computing sites. The graphic below starts to map some of the potential physical locations for an edge site. In this report, STL Partners forecasts edge infrastructure deployments between 2020 and 2024, by type of operator, use-case domains, edge locations and type of computing.

There is a spectrum of edge infrastructure in which telcos may invest

mapping edge infrastructure investmentSource: STL Partners

This paper primarily draws on discussions with operators and others within the edge ecosystem conducted between February and March 2020. We interviewed a range of operators, and a range of job roles within them, to gain a snapshot of the existing attitudes and ambitions within the industry to shape our understanding of how telcos are likely to build out edge infrastructure.

Table of Contents

  • Executive Summary
  • Preface
  • Reality check: edge computing is not yet mature, and much is still to be decided
    • Reality #1: Organisationally, operators are still divided
    • Reality #2: The edge ecosystem is evolving fast
    • Reality #3: Operators are trying to predict, respond to and figure out what the “new normal” will be post COVID-19
  • Edge computing: key terms and definitions
    • Where is “the edge”?
    • What applications & use cases will run at edge sites?
    • What is inside a telco edge site?
  • How edge will play out: 5-year evolution
    • Modelling exercise: converting hype into numbers
    • Our findings: edge deployments won’t be very “edgy” in 2024
    • Short-term adoption of vRAN is the driving factor
    • New revenues from MEC remain a longer-term opportunity
    • Short-term adoption is focused on efficient operations, but revenue opportunity has not been dismissed
  • Addressing the edge opportunity: operators can be more than infrastructure providers
  • Conclusions: practical recommendations for operators

Enter your details below to request an extract of the report

Open RAN: What should telcos do?

————————————————————————————————————–

Related webinar: Open RAN: What should telcos do?

In this webinar STL Partners addressed the three most important sub-components of Open RAN (open-RAN, vRAN and C-RAN) and how they interact to enable a new, virtualized, less vendor-dominated RAN ecosystem. The webinar covered:

* Why Open RAN matters – and why it will be about 4G (not 5G) in the short term
* Data-led overview of existing Open RAN initiatives and challenges
* Our recommended deployment strategies for operators
* What the vendors are up to – and how we expect that to change

Date: Tuesday 4th August 2020
Time: 4pm GMT

Access the video recording and presentation slides

————————————————————————————————————————————————————————-

For the report chart pack download the additional file on the left

What is the open RAN and why does it matter?

The open RAN’ encompasses a group of technological approaches that are designed to make the radio access network (RAN) more cost effective and flexible. It involves a shift away from traditional, proprietary radio hardware and network architectures, driven by single vendors, towards new, virtualised platforms and a more open vendor ecosystem.

Legacy RAN: single-vendor and inflexible

The traditional, legacy radio access network (RAN) uses dedicated hardware to deliver the baseband function (modulation and management of the frequency range used for cellular network transmission), along with proprietary interfaces (typically based on the Common Public Radio Interface (CPRI) standard) for the fronthaul from the baseband unit (BBU) to the remote radio unit (RRU) at the top of the transmitter mast.

Figure 1: Legacy RAN architecture

Source: STL Partners

This means that, typically, telcos have needed to buy the baseband and the radio from a single vendor, with the market presently dominated largely by the ‘big three’ (Ericsson, Huawei and Nokia), together with a smaller market share for Samsung and ZTE.

The architecture of the legacy RAN – with BBUs typically but not always at every cell site – has many limitations:

  • It is resource-intensive and energy-inefficient – employing a mass of redundant equipment operating at well below capacity most of the time, while consuming a lot of power
  • It is expensive, as telcos are obliged to purchase and operate a large inventory of physical kit from a limited number of suppliers, which keeps the prices high
  • It is inflexible, as telcos are unable to deploy to new and varied sites – e.g. macro-cells, small cells and micro-cells with different radios and frequency ranges – in an agile and cost-effective manner
  • It is more costly to manage and maintain, as there is less automation and more physical kit to support, requiring personnel to be sent out to remote sites
  • It is not very programmable to support the varied frequency, latency and bandwidth demands of different services.

Enter your details below to request an extract of the report

Moving to the open RAN: C-RAN, vRAN and open-RAN

There are now many distinct technologies and standards emerging in the radio access space that involve a shift away from traditional, proprietary radio hardware and network architectures, driven by single vendors, towards new, virtualised platforms and a more open vendor ecosystem.

We have adopted ‘the open RAN’ as an umbrella term which encompasses all of these technologies. Together, they are expected to make the RAN more cost effective and flexible. The three most important sub-components of the open RAN are C-RAN, vRAN and open-RAN.

Centralised RAN (C-RAN), also known as cloud RAN, involves distributing and centralising the baseband functionality across different telco edge, aggregation and core locations, and in the telco cloud, so that baseband processing for multiple sites can be carried out in different locations, nearer or further to the end user.

This enables more effective control and programming of capacity, latency, spectrum usage and service quality, including in support of 5G core-enabled technologies and services such as network slicing, URLLC, etc. In particular, baseband functionality can be split between more centralised sites (central baseband units – CU) and more distributed sites (distributed unit – DU) in much the same way, and for a similar purpose, as the split between centralised control planes and distributed user planes in the mobile core, as illustrated below:

Figure 2: Centralised RAN (C-RAN) architecture

Cloud RAN architecture

Source: STL Partners

Virtual RAN (vRAN) involves virtualising (and now also containerising) the BBU so that it is run as software on generic hardware (General Purpose Processing – GPP) platforms. This enables the baseband software and hardware, and even different components of them, to be supplied by different vendors.

Figure 3: Virtual RAN (vRAN) architecture

vRAN architecture

Source: STL Partners

Open-RANnote the hyphenation – involves replacing the vendor-proprietary interfaces between the BBU and the RRU with open standards. This enables BBUs (and parts thereof) from one or multiple vendors to interoperate with radios from other vendors, resulting in a fully disaggregated RAN:

Figure 4: Open-RAN architecture

Open-RAN architecture

Source: STL Partners

 

RAN terminology: clearing up confusion

You will have noticed that the technologies above have similar-sounding names and overlapping definitions. To add to potential confusion, they are often deployed together.

Figure 5: The open RAN Venn – How C-RAN, vRAN and open-RAN fit together

Open-RAN venn: open-RAN inside vRAN inside C-RAN

Source: STL Partners

As the above diagram illustrates, all forms of the open RAN involve C-RAN, but only a subset of C-RAN involves virtualisation of the baseband function (vRAN); and only a subset of vRAN involves disaggregation of the BBU and RRU (open-RAN).

To help eliminate ambiguity we are adopting the typographical convention ‘open-RAN’ to convey the narrower meaning: disaggregation of the BBU and RRU facilitated by open interfaces. Similarly, where we are dealing with deployments or architectures that involve vRAN and / or cloud RAN but not open-RAN in the narrower sense, we refer to those examples as ‘vRAN’ or ‘C-RAN’ as appropriate.

In the coming pages, we will investigate why open RAN matters, what telcos are doing about it – and what they should do next.

Table of contents

  • Executive summary
  • What is the open RAN and why does it matter?
    • Legacy RAN: single-vendor and inflexible
    • The open RAN: disaggregated and flexible
    • Terminology, initiatives & standards: clearing up confusion
  • What are the opportunities for open RAN?
    • Deployment in macro networks
    • Deployment in greenfield networks
    • Deployment in geographically-dispersed/under-served areas
    • Deployment to support consolidation of radio generations
    • Deployment to support capacity and coverage build-out
    • Deployment to support private and neutral host networks
  • How have operators deployed open RAN?
    • What are the operators doing?
    • How successful have deployments been?
  • How are vendors approaching open RAN?
    • Challenger RAN vendors: pushing for a revolution
    • Incumbent RAN vendors: resisting the open RAN
    • Are incumbent vendors taking the right approach?
  • How should operators do open RAN?
    • Step 1: Define the roadmap
    • Step 2: Implement
    • Step 3: Measure success
  • Conclusions
    • What next?

Enter your details below to request an extract of the report

5G: Bridging hype, reality and future promises

The 5G situation seems paradoxical

People in China and South Korea are buying 5G phones by the million, far more than initially expected, yet many western telcos are moving cautiously. Will your company also find demand? What’s the smart strategy while uncertainty remains? What actions are needed to lead in the 5G era? What questions must be answered?

New data requires new thinking. STL Partners 5G strategies: Lessons from the early movers presented the situation in late 2019, and in What will make or break 5G growth? we outlined the key drivers and inhibitors for 5G growth. This follow on report addresses what needs to happen next.

The report is informed by talks with executives of over three dozen companies and email contacts with many more, including 21 of the first 24 telcos who have deployed. This report covers considerations for the next three years (2020–2023) based on what we know today.

“Seize the 5G opportunity” says Ke Ruiwen, Chairman, China Telecom, and Chinese reports claimed 14 million sales by the end of 2019. Korea announced two million subscribers in July 2019 and by December 2019 approached five million. By early 2020, The Korean carriers were confident 30% of the market will be using 5G by the end of 2020. In the US, Verizon is selling 5G phones even in areas without 5G services,  With nine phone makers looking for market share, the price in China is US$285–$500 and falling, so the handset price barrier seems to be coming down fast.

Yet in many other markets, operators progress is significantly more tentative. So what is going on, and what should you do about it?

Enter your details below to request an extract of the report

5G technology works OK

22 of the first 24 operators to deploy are using mid-band radio frequencies.

Vodafone UK claims “5G will work at average speeds of 150–200 Mbps.” Speeds are typically 100 to 500 Mbps, rarely a gigabit. Latency is about 30 milliseconds, only about a third better than decent 4G. Mid-band reach is excellent. Sprint has demonstrated that simply upgrading existing base stations can provide substantial coverage.

5G has a draft business case now: people want to buy 5G phones. New use cases are mostly years away but the prospect of better mobile broadband is winning customers. The costs of radios, backhaul, and core are falling as five system vendors – Ericsson, Huawei, Nokia, Samsung, and ZTE – fight for market share. They’ve shipped over 600,000 radios. Many newcomers are gaining traction, for example Altiostar won a large contract from Rakuten and Mavenir is in trials with DT.

The high cost of 5G networks is an outdated myth. DT, Orange, Verizon, and AT&T are building 5G while cutting or keeping capex flat. Sprint’s results suggest a smart build can quickly reach half the country without a large increase in capital spending. Instead, the issue for operators is that it requires new spending with uncertain returns.

The technology works, mostly. Mid-band is performing as expected, with typical speeds of 100–500Mbps outdoors, though indoor performance is less clear yet. mmWave indoor is badly degraded. Some SDN, NFV, and other tools for automation have reached the field. However, 5G upstream is in limited use. Many carriers are combining 5G downstream with 4G upstream for now. However, each base station currently requires much more power than 4G bases, which leads to high opex. Dynamic spectrum sharing, which allows 5G to share unneeded 4G spectrum, is still in test. Many features of SDN and NFV are not yet ready.

So what should companies do? The next sections review go-to-market lessons, status on forward-looking applications, and technical considerations.

Early go-to-market lessons

Don’t oversell 5G

The continuing publicity for 5G is proving powerful, but variable. Because some customers are already convinced they want 5G, marketing and advertising do not always need to emphasise the value of 5G. For those customers, make clear why your company’s offering is the best compared to rivals’. However, the draw of 5G is not universal. Many remain sceptical, especially if their past experience with 4G has been lacklustre. They – and also a minority swayed by alarmist anti-5G rhetoric – will need far more nuanced and persuasive marketing.

Operators should be wary of overclaiming. 5G speed, although impressive, currently has few practical applications that don’t already work well over decent 4G. Fixed home broadband is a possible exception here. As the objective advantages of 5G in the near future are likely to be limited, operators should not hype features that are unrealistic today, no matter how glamorous. If you don’t have concrete selling propositions, do image advertising or use happy customer testimonials.

Table of Contents

  • Executive Summary
  • Introduction
    • 5G technology works OK
  • Early go-to-market lessons
    • Don’t oversell 5G
    • Price to match the experience
    • Deliver a valuable product
    • Concerns about new competition
    • Prepare for possible demand increases
    • The interdependencies of edge and 5G
  • Potential new applications
    • Large now and likely to grow in the 5G era
    • Near-term applications with possible major impact for 5G
    • Mid- and long-term 5G demand drivers
  • Technology choices, in summary
    • Backhaul and transport networks
    • When will 5G SA cores be needed (or available)?
    • 5G security? Nothing is perfect
    • Telco cloud: NFV, SDN, cloud native cores, and beyond
    • AI and automation in 5G
    • Power and heat

Enter your details below to request an extract of the report