Telco ecosystems: How to make them work

The ecosystem business framework

The success of large businesses such as Microsoft, Amazon and Google as well as digital disrupters like Airbnb and Uber is attributed to their adoption of platform-enabled ecosystem business frameworks. Microsoft, Amazon and Google know how to make ecosystems work. It is their ecosystem approach that helped them to scale quickly, innovate and unlock value in opportunity areas where businesses that are vertically integrated, or have a linear value chain, would have struggled. Internet-enabled digital opportunity areas tend to be unsuited to the traditional business frameworks. These depend on having the time and the ability to anticipate needs, plan and execute accordingly.

As businesses in the telecommunications sector and beyond try to emulate the success of these companies and their ecosystem approach, it is necessary to clarify what is meant by the term “ecosystem” and how it can provide a framework for organising business.

The word “ecosystem” is borrowed from biology. It refers to a community of organisms – of any number of species – living within a defined physical environment.

A biological ecosystem

The components of a biological ecosystem

Source: STL Partners

A business ecosystem can therefore be thought of as a community of stakeholders (of different types) that exist within a defined business environment. The environment of a business ecosystem can be small or large.  This is also true in biology, where both a tree and a rainforest can equally be considered ecosystem environments.

The number of organisms within a biological community is dynamic. They coexist with others and are interdependent within the community and the environment. Environmental resources (i.e. energy and matter) flow through the system efficiently. This is how the ecosystem works.

Companies that adopt an ecosystem business framework identify a community of stakeholders to help them address an opportunity area, or drive business in that space. They then create a business environment (e.g. platforms, rules) to organise economic activity among those communities.  The environment integrates community activities in a complementary way. This model is consistent with STL Partners’ vision for a Coordination Age, where desired outcomes are delivered to customers by multiple parties acting together.

Characteristics of business ecosystems that work

In the case of Google, it adopted an ecosystem approach to tackle the search opportunity. Its search engine platform provides the environment for an external stakeholder community of businesses to reach consumers as they navigate the internet, based on what consumers are looking for.

  • Google does not directly participate in the business-consumer transaction, but its platform reduces friction for participants (providing a good customer experience) and captures information on the exchange.

While Google leverages a technical platform, this is not a requirement for an ecosystem framework. Nespresso built an ecosystem around its patented coffee pod. It needed to establish a user-base for the pods, so it developed a business environment that included licensing arrangements for coffee machine manufacturers.  In addition, it provided support for high-end homeware retailers to supply these machines to end-users. It also created the online Nespresso Club for coffee aficionados to maintain demand for its product (a previous vertically integrated strategy to address this premium coffee-drinking niche had failed).

Ecosystem relevance for telcos

Telcos are exploring new opportunities for revenue. In many of these opportunities, the needs of the customer are evolving or changeable, budgets are tight, and time-to-market is critical. Planning and executing traditional business frameworks can be difficult under these circumstances, so ecosystem business frameworks are understandably of interest.

Traditional business frameworks require companies to match their internal strengths and capabilities to those required to address an opportunity. An ecosystem framework requires companies to consider where those strengths and capabilities are (i.e. external stakeholder communities). An ecosystem orchestrator then creates an environment in which the stakeholders contribute their respective value to meet that end. Additional end-user value may also be derived by supporting stakeholder communities whose products and services use, or are used with, the end-product or service of the ecosystem (e.g. the availability of third party App Store apps add value for end customers and drives demand for high end Apple iPhones). It requires “outside-in” strategic thinking that goes beyond the bounds of the company – or even the industry (i.e. who has the assets and capabilities, who/what will support demand from end-users).

Many companies have rushed to implement ecosystem business frameworks, but have not attained the success of Microsoft, Amazon or Google, or in the telco arena, M-Pesa. Telcos require an understanding of the rationale behind ecosystem business frameworks, what makes them work and how this has played out in other telco ecosystem implementations. As a result, they should be better able to determine whether to leverage this approach more widely.

Table of Contents

  • Executive Summary
  • The ecosystem business framework
  • Why ecosystem business frameworks?
    • Benefits of ecosystem business frameworks
  • Identifying ecosystem business frameworks
  • Telco experience with ecosystem frameworks
    • AT&T Community
    • Deutsche Telekom Qivicon
    • Telecom Infra Project (TIP)
    • GSMA Mobile Connect
    • Android
    • Lessons from telco experience
  • Criteria for successful ecosystem businesses
    • “Destination” status
    • Strong assets and capabilities to share
    • Dynamic strategy
    • Deep end-user knowledge
    • Participant stakeholder experience excellence
    • Continuous innovation
    • Conclusions
  • Next steps
    • Index

Fighting the fakes: How telcos can help

Internet platforms need a frictionless solution to fight the fakes

On the Internet, the old adage, nobody knows you are a dog, can still ring true. All of the major Internet platforms, with the partial exception of Apple, are fighting frauds and fakes. That’s generally because these platforms either allow users to remain anonymous or because they use lax authentication systems that prioritise ease-of-use over rigour. Some people then use the cloak of anonymity in many different ways, such as writing glowing reviews of products they have never used on Amazon (in return for a payment) or enthusiastic reviews of restaurants owned by friends on Tripadvisor. Even the platforms that require users to register financial details are open to abuse. There have been reports of multiple scams on eBay, while regulators have alleged there has been widespread sharing of Uber accounts among drivers in London and other cities.

At the same time, Facebook/WhatsApp, Google/YouTube, Twitter and other social media services are experiencing a deluge of fake news, some of which can be very damaging for society. There has been a mountain of misinformation relating to COVID-19 circulating on social media, such as the notion that if you can hold your breath for 10 seconds, you don’t have the virus. Fake news is alleged to have distorted the outcome of the U.S. presidential election and the Brexit referendum in the U.K.

In essence, the popularity of the major Internet platforms has made them a target for unscrupulous people who want to propagate their world views, promote their products and services, discredit rivals and have ulterior (and potentially criminal) motives for participating in the gig economy.

Although all the leading Internet platforms use tools and reporting mechanisms to combat misuse, they are still beset with problems. In reality, these platforms are walking a tightrope – if they make authentication procedures too cumbersome, they risk losing users to rival platforms, while also incurring additional costs. But if they allow a free-for-all in which anonymity reigns, they risk a major loss of trust in their services.

In STL Partners’ view, the best way to walk this tightrope is to use invisible authentication – the background monitoring of behavioural data to detect suspicious activities. In other words, you keep the Internet platform very open and easy-to-use, but algorithms process the incoming data and learn to detect the patterns that signal potential frauds or fakes. If this idea were taken to an extreme, online interactions and transactions could become completely frictionless. Rather than asking a person to enter a username and password to access a service, they can be identified through the device they are using, their location, the pattern of keystrokes and which features they access once they are logged in. However, the effectiveness of such systems depends heavily on the quality and quantity of data they are feeding on.

In come telcos

This report explores how telcos could use their existing systems and data to help the major Internet companies to build better systems to protect the integrity of their platforms.

It also considers the extent to which telcos will need to work together to effectively fight fraud, just as they do to combat telecoms-related fraud and prevent stolen phones from being used across networks. For most use cases, the telcos in each national market will generally need to provide a common gateway through which a third party could check attributes of the user of a specific mobile phone number. As they plot their way out of the current pandemic, governments are increasingly likely to call for such gateways to help them track the spread of COVID-19 and identify people who may have become infected.

Request a report extract

Using big data to combat fraud

In the financial services sector, artificial intelligence (AI) is now widely used to help detect potentially fraudulent financial transactions. Learning from real-world examples, neural networks can detect the behavioural patterns associated with fraud and how they are changing over time. They can then create a dynamic set of thresholds that can be used to trigger alarms, which could prompt a bank to decline a transaction.

In a white paper published in 2019, IBM claimed its AI and cognitive solutions are having a major impact on transaction monitoring and payment fraud modelling. In one of several case studies, the paper describes how the National Payment Switch in France (STET) is using behavioural information to reduce fraud losses by US$100 million annually. Owned by a consortium of financial institutions, STET processes more than 30 billion credit and debit card, cross-border, domestic and on-us payments annually.

STET now assesses the fraud risk for every authorisation request in real time. The white paper says IBM’s Safer Payments system generates a risk score, which is then passed to banks, issuers and acquirers, which combine it with customer information to make a decision on whether to clear or decline the transaction. IBM claims the system can process up to 1,200 transactions per second, and can compute a risk score in less than 10 milliseconds. While STET itself doesn’t have any customer data or data from other payment channels, the IBM system looks across all transactions, countrywide, as well as creating “deep behavioural profiles for millions of cards and merchants.”

Telcos, or at least the connectivity they provide, are also helping banks combat fraud. If they think a transaction is suspicious, banks will increasingly send a text message or call a customer’s phone to check whether they have actually initiated the transaction. Now, some telcos, such as O2 in the UK, are making this process more robust by enabling banks to check whether the user’s SIM card has been swapped between devices recently or if any call diverts are active – criminals sometimes pose as a specific customer to request a new SIM. All calls and texts to the number are then routed to the SIM in the fraudster’s control, enabling them to activate codes or authorisations needed for online bank transfers, such as a one-time PINs or passwords.

As described below, this is one of the use cases supported by Mobile Connect, a specification developed by the GSMA, to enable mobile operators to take a consistent approach to providing third parties with identification, authentication and attribute-sharing services. The idea behind Mobile Connect is that a third party, such as a bank, can access these services regardless of which operator their customer subscribes to.

Adapting telco authentication for Amazon, Uber and Airbnb

Telcos could also provide Internet platforms, such as Amazon, Uber and Airbnb, with identification, authentication and attribute-sharing services that will help to shore up trust in their services. Building on their nascent anti-fraud offerings for the financial services industry, telcos could act as intermediaries, authenticating specific attributes of an individual without actually sharing personal data with the platform.

STL Partners has identified four broad data sets telcos could use to help combat fraud:

  1. Account activity – checking which individual owns which SIM card and that the SIM hasn’t been swapped recently;
  2. Movement patterns – tracking where people are and where they travel frequently to help identify if they are who they say they are;
  3. Contact patterns – establishing which individuals come into contact with each other regularly;
  4. Spending patterns – monitoring how much money an individual spends on telecoms services.

Table of contents

  • Executive Summary
  • Introduction
  • Using big data to combat fraud
    • Account activity
    • Movement patterns
    • Contact patterns
    • Spending patterns
    • Caveats and considerations
  • Limited progress so far
    • Patchy adoption of Mobile Connect
    • Mobile identification in the UK
    • Turkcell employs machine learning
  • Big Internet use cases
    • Amazon – grappling with fake product reviews
    • Facebook and eBay – also need to clampdown
    • Google Maps and Tripadvisor – targets for fake reviews
    • Uber – serious safety concerns
    • Airbnb – balancing the interests of hosts and guests
  • Conclusions
  • Index

Request STL research insights overview pack

Innovation Leaders: A Surprisingly Successful Telco API Programme

Introduction

The value of APIs

Application programming interfaces (APIs) are a central part of the mobile and cloud-based app economy. On the web, APIs serve to connect back-end and front-end applications (and their data) to one another. While often treated as a technical topic, APIs also have tremendous economic value. This was illustrated very recently when Oracle sued Google for copyright infringement over the use of Oracle-owned Java APIs during the development of Google’s Android operating system. Even though Google won the case, Oracle’s quest for around $9 billion showed the huge potential value associated with widely-adopted APIs.

The API challenge facing telcos…

For telcos, APIs represent an opportunity to monetise their unique network and IT assets by making them available to third-parties. This is particularly important in the context of declining ‘core’ revenues caused by cloud and content providers bypassing telco services. This so-called “over the top” (OTT) threat forces telcos to both partner with third-parties as well as create their own competing offerings in order to dampen the decline in revenues and profits. With mobile app ecosystems maturing and, increasingly, extending beyond smartphones into wearables, cars, TVs, virtual reality, productivity devices and so forth, telcos need to embrace these developments to avoid being a ‘plain vanilla’ connectivity provider – a low-margin low-growth business.

However, thriving in this co-opetitive environment is challenging for telcos because major digital players such as Google, Amazon, Netflix and Baidu, and a raft of smaller developers have an operating model and culture of agility and fast innovation. Telcos need to become easier to collaborate with and a systematic approach to API management and API exposure should be central to any telco partnership strategy and wider ‘transformation programme’.

…and Dialog’s best-practice approach

In this report, we will analyse how Dialog, Sri Lanka’s largest operator, has adopted a two-pronged API implementation strategy. Dialog has systematically exposed APIs:

  1. Externally in order to monetise in partnership with third-parties;
  2. Internally in order to foster agile service creation and reduce operational costs.

STL Partners believes that this two-pronged strategy has been instrumental in Dialog’s API success and that other operators should explore a similar strategy when seeking to launch or expand their API activities.

Dialog Axiata has steadily increased the number of API calls (indexed)

Source: Dialog Axiata

In this report, we will first cover the core lessons that can be drawn from Dialog’s approach and success and then we will outline in detail how Dialog’s Group CIO and Axiata Digital’s CTO, Anthony Rodrigo, and his team implemented APIs within the company and, subsequently, the wider Axiata Group.

 

  • Executive summary
  • Introduction
  • The value of APIs
  • The API challenge facing telcos…
  • …and Dialog’s best-practice approach
  • 5 key ‘telco API programme’ lessons
  • Background: What are APIs and why are they relevant to telcos?
  • API basics
  • API growth
  • The telecoms industry’s API track record is underwhelming
  • The Dialog API Programme (DAP)
  • Overview
  • Ideamart: A flexible approach to long-tail developer engagement
  • Axiata MIFE – building a multipurpose API platform
  • Drinking your own champagne : Dialog’s use of APIs internally
  • Expanding MIFE across Axiata opcos and beyond
  • Conclusion and outlook

 

  • Figure 1: APIs link backend infrastructure with applications
  • Figure 2: The explosive growth of open APIs
  • Figure 3: How a REST API works its magic
  • Figure 4: DAP service layers
  • Figure 5: Five APIs are available for Idea Pro apps
  • Figure 6: Idea Apps – pre-configured API templates
  • Figure 7: Ideadroid/Apptizer allows restaurants to specify food items they want to offer through the app
  • Figure 8: Ideamart’s developer engagement stats compare favourably to AT&T, Orange, and Vodafone
  • Figure 9: Steady increase in the number of API calls (indexed)
  • Figure 10: Dialog Allapps on Android
  • Figure 11: Ideabiz API platform for enterprise third-parties
  • Figure 12: Dialog Selfcare app user interface
  • Figure 13: Dialog Selfcare app functions – share in total number of hits
  • Figure 14: Apple App Store – Dialog Selfcare app ratings
  • Figure 15: Google Play Store – Dialog Selfcare app ratings
  • Figure 16: MIFE enables the creation of a variety of digital services – both internally and externally