The Economy of Things: Unlocking the true value of IoT data

Download this report for free by clicking here

Progressing the Economy of Things (EoT)

The Internet of Things (IoT) has rapidly gained traction in the last decade. Many billions of IoT devices and machine-to-machine (M2M) applications have been developed creating efficiencies and enabling more intelligent, informed and automated decision-making in industries as diverse as manufacturing, healthcare, and transportation. Despite this, telcos are struggling to unlock significant IoT revenues today .

The unfulfilled potential of the IoT

The true value of IoT data today is unrealised and not business enabled. Today, data insights generated from IoT are typically focused on improving internal efficiencies within one organisation. In the future, IoT should both drive internal efficiencies and create new revenue opportunities through making some of the data available for external organisations to purchase.

The fact that the IoT data generated cannot be shared across different IoT devices and systems, is missing a great opportunity to unlock wider collective value across a broad network of connected devices. Most IoT devices are closed command and control solutions where only the device and the manager of the device can communicate. This siloed approach means that opportunities are missed to combine data sources to create more contextualised insights with deeper value.

economy of things

For example, while a coffee company may know what coffee you order (data collected from your connected coffee machine), without sharing that data across a broader network (such as data also collected from your connected smart metre, fridge and car), they will lack the wider context of your other habits/likes/dislikes which limits the targeted advertising they can achieve. Device owners are also often unwilling to share their IoT data with other businesses citing concerns around data security and authorisation and the difficulty in providing an immutable track record of each transaction.

So, how can data generated from IoT devices be monetised and shared across the wider ecosystem?

Economy of Things: The natural next step

The answer could lie in EoT. The term was coined by the IBM Institute for Business Value and represents the ”liquification of the physical world” where physical assets (the ”things”) in IoT become participants in digital markets . EoT signifies a network of participating connected “things” that can interact and communicate with each other to trade and transact autonomously. EoT offers the ability to anchor an identity to an IoT device to be able to transact autonomously. EoT provides true interoperability that can redefine the limits of a traditional IoT ecosystem.

Driving the transition from IoT to EoT relies on creating a platform that creates open participation and collaboration between a cross-industry ecosystem of partners. This interoperable infrastructure helps bring EoT into reality, providing the fundamental brokerage of data products, services and IoT data across the platform.

We are expecting to see the inflection point by 2028 as businesses look towards the EoT to enable the monetisation of their IoT data. This inflection is partly being driven by the sheer number of connected IoT devices that exist today within close proximity to each other. Each are capturing transactional data that could be of value to the other, rather than from larger data sets from distributed sources.

We forecast that the number of EoT devices will grow at a compound annual growth rate of nearly 70% from 2024 to 2030, representing up to 10% of total IoT devices by 2030. Of these EoT devices, up to 20% will be cellular connected devices by 2030.

Economy of Things

Table of Contents

  • Executive Summary
  • Introduction
    • The unfulfilled potential of the IoT
  • Economy of Things: The natural next step
    • Transitioning to the Economy of Things
  • Enter Vodafone DAB platform
  • Initial EoT use cases focus on mobility
    • Vodafone debut use case: EV charging
    • Supply chain monitoring is another leading EoT use case
    • There are endless potential use cases
    • Primary revenue stream revolves around data monetisation
  • Recommendations for enterprises
  • A message from our sponsor

Related research

Download this report for free by clicking here

What do enterprises want from telcos?

Enterprises are striving for success…

All enterprises want success. The language and specifics that define this may differ across sectors – but the underlying drivers are the same. They include financial, strategic, operational and market-facing factors, as described below.

Success drivers

enterprise

Source: STL Partners

…against a new, transformed backdrop

Demand and supply forces have changed: Customers expect more, but resources are increasingly constrained. Enterprises are pondering the range of new technologies and practices to help them meet the challenges of a Coordination Age:

  • Coordinating outcomes and experiences for customers
  • Collaborating to enable the delivery of more value
  • Bridging the digital and physical worlds

The Coordination Age

Enterprise

Source: STL Partners

Telcos’ national scope and assets mean they are well placed to participate in some of the new opportunity areas of the Coordination Age. Although technologies and applications running over the telcos’ connectivity are often developed at global scale, how they are implemented within local and national markets is likely to vary from one country to the next, owing to regulatory constraints and how these have shaped the structure and priorities of the market. Telcos can help enterprises navigate this path.

Enter your details below to download an extract of the report

Do enterprises believe telcos can help?

What enterprises think of telcos depends on their tech maturity, their knowledge and experience of telcos, the telcos’ technology capability and the sector that they are in, as shown below.

Factors influencing enterprise consideration

 

enterprisesSource: STL Partners

Telcos must work to understand enterprise needs in their specific markets and how they are best placed to serve those needs.

Table of contents

  • Executive summary
  • Introduction
  • Understanding telco enterprise strategies
  • Seven enterprise growth opportunities

Related research

STL Partners has a research solution focused on growing enterprise revenues. Reports that could be of interest include:

Enter your details below to download an extract of the report

Why B2B marketplace sits at the heart of a thriving ecosystem

B2B Marketplaces: A key enabler for new growth

What is a B2B marketplace?

At its core, a marketplace is an entity through which buyers and sellers can effectively and efficiently transact. It provides a platform to reduce friction for the provisioning of products, services, and solutions: connecting a distributed ecosystem of suppliers with an equally distributed ecosystem of customers.

Think of Amazon, which orchestrates a B2C retail marketplace – Amazon’s marketplace has created a site in which a host of different vendors, whether regional or global, major corporate or small/medium enterprise (SME), can compete directly with one another (and in some cases directly with Amazon’s own products) to reach and serve a wide scale customer base. Using the example of Amazon, we can therefore describe four key actors within the marketplace:

Key actors in a marketplace

B2B marketplace

Enter your details below to request an extract of the report

  • Customers: Amazon’s marketplace creates a simple tool through which users can seamlessly identify, evaluate, and purchase products from a wider range of sellers. These suppliers, due to competition, must continuously innovate to create value for customers or risk competing solely on price. This provides a strong proposition combining ease, choice, and value for the customer. For smaller enterprises and for more simple services (e.g. cybersecurity, productivity software) a B2C-style marketplace works well. Amazon provides a good example of a B2C marketplace – however, for larger enterprises requiring more complex, verticalised solutions, the Amazon “one click purchasing” capability may be less appropriate.
    The marketplace still acts as an entity within which enterprises can identify new, innovative, solution providers and evaluate different components/vendors but may act more as a discovery mechanism – it generates a customer lead for suppliers and a vendor lead for customers. The customer will go on to engage directly with a sales team or representative within the vendor, rather than purchasing and spinning up the service directly through the marketplace. This is because the solution sales cycle is complex and requires a deep knowledge of the end customer and vertical specific expertise. To generate revenue, the orchestrator in this situation would have to create a comparative tool pricing for the use of these larger players.
    Particularly for more fragmented industries with a significant number of SMEs, offering pre-integrated, out-of-the-box solutions still offers the orchestrator a strong revenue opportunity.
  • Suppliers: In the context of B2B, suppliers in the marketplace may offer holistic vertical solutions including end devices, connectivity, applications, infrastructure etc. or sell those capabilities as individual components. Through participation in the marketplace, these vendors gain a strong distribution channel to sell their solution. Furthermore, they can get to market with solutions much faster than a more traditional, vertically integrated route, which would require longer cycles of integration and testing between partners, more investment in marketing & sales engines, and the need to repeat the process with each channel/solution partner identified.
    It also acts as a platform through which to learn more about competitors, identify or even engage potential partners, and understand more about their end customer needs and drivers. The marketplace can therefore act as a tangible entity around which the supply side ecosystem can innovate. This is through varying levels of data and insights, collected through the marketplace, which the orchestrator may allow certain suppliers to access.
  • Orchestrators: Orchestrators help coordinate the underlying community of suppliers and customers, defining the dimensions of the marketplace (which we will discuss further in a later section of the report). They set the parameters and objectives of the marketplace (e.g. which suppliers to onboard to the marketplace and how, which customers to target), and bring additional value to suppliers and customers through insights, supplier and customer experience, and marketing and sales engines to build scale.
    As the orchestrator of the ecosystem, Amazon has leveraged these supply and demand side benefits to grow into the retail giant that we know today. It has successfully driven a flywheel to build scale with suppliers and customers, and subsequently monetised this scale through a variety of different revenue streams – we will discuss these further later in the report.

The Amazon flywheel for marketplace success

B2B marketplace

  • Enablers: For a marketplace to function smoothly, a flexible but resilient backbone of support systems is required. This includes everything from billing, to authentication, onboarding, fulfilment, delivery, settlement, etc. A digital marketplace can automate many of these functions, diminishing the friction of interaction between partners, vendors, and customers.
    Oftentimes, these enablement services will be managed by an orchestrator who has complete oversight of the marketplace. Going back to the example of Amazon, Amazon not only orchestrates the marketplace but provides enablement services to capture additional value and revenue streams. This is in slight contrast, for example, to Ebay, which orchestrates the marketplace between different sellers, but is less involved in the delivery and fulfilment of the order. There is, therefore, nuance around how much of a role the orchestrator may take in the marketplace, and whether they partner to deliver enabling capabilities or completely outsource them to others. Enablers are, however, essential for a functioning marketplace and drive simplicity and stickiness for all actors. 

In summary, the marketplace brings opportunities to each of the actors within it and helps galvanise a diverse and fragmented ecosystem around a tangible construct. It enables customers to reach new suppliers, suppliers to reach new customers as well as engage new partners, and the orchestrators and enablers to drive new streams of revenue growth.

Table of Contents

  • Executive Summary
  • B2B Marketplaces: A key enabler for new growth
    • What is a B2B marketplace?
  • Marketplaces as a B2B growth driver
  • The dimensions of a successful B2B marketplace in healthcare
    • Due to the need for solution certification, a healthcare marketplace will remain more closed and centrally controlled
    • The healthcare marketplace will encourage participants to collaborate while excluding competitors…at first
    • Telcos should create value in the marketplace by driving biodiversity
    • Telcos have the capacity to collect valuable customer data insights but must first develop their capabilities
  • The guiding principles for building a marketplace: Where telcos should start
  • Index

Related Research

Enter your details below to request an extract of the report

Four goals for the data-driven telco

Becoming a data-driven telco

There have been many case studies over the last five years demonstrating the disruption caused by “data-driven businesses”, i.e. those using insights to understand customers, automate processes, change their business models and drive new revenues. In the future, this concept will become an integral part of what it takes to compete successfully, allowing organisations to understand and run all parts of their operations, work with their customers and partners and take part in external activities in new ecosystems. This applies to telecoms operators as much as any other industry.

This research builds on a range of reports STL Partners has previously published on strategic topics related to telcos’ use of data, including:

This research turns to the practical topics of delivering on these strategic goals. The diagram below offers an overview of the drivers and barriers affecting delivery areas such as telco data management and machine learning (ML) in the short and longer term.

Drivers and barriers to being a data-driven telco

Source: STL Partners

Enter your details below to request an extract of the report

What capabilities should telcos develop?

Telcos are reasonably sophisticated users of data, but their particularly complex web of legacy systems requires a good deal of work around data management and governance to enable the extraction of data sets to give 360-degree view of the customer – and increasingly to provide training data for algorithms.

In the mid-term, telcos that are successful in selling IoT and becoming ecosystem players will require new A3 to deal with the increasing number of services, devices, price points and parties involved in providing service to a customer. Our research suggests that there is a range of new A3 technologies that can provide the automation and intelligence for this, as well as for the underlying data management processes.

In the longer-term, A3 will speed up decision making, impacting company strategy, new product and service creation, and customer experience. Humans will increasingly be supported by AI-, ML- and automation-powered tools in their decision-making. A similar progression will occur among competitors in telecoms, and in adjacent markets, increasing the complexity and speed of doing business. Besides integrating A3 into human workflows, working at increasing speed will depend on getting richer insights out of the available data with techniques such as small data and creation of synthetic data.

Capabilities for a data-driven telco

Source: STL Partners

 

Table of contents

  • Executive Summary
    • Capabilities telcos should develop over the medium term
    • What will telcos focus on in the mid-term?
    • Next steps
  • Becoming a data-driven telco
    • Short term drivers
    • Barriers in the short term
    • Long term drivers
    • Barriers in the long term
  • Availability of data
    • Use of data fabrics
    • Better data labelling
    • Rise of synthetic data
    • More intelligent data selection
    • Telco strategies for cloud usage
  • Equipping people
    • Augmented analytics and business intelligence
    • Decision intelligence
  • Work on governance
    • Governance across the telco
    • Agility in governance
    • Governance for AI and machine learning
    • Ethical governance
    • Improved measurement of governance
    • Governance in ecosystems
  • Index

Innovation leader case study: Telefónica Tech AI of Things

The origins of Telefónica Tech AI of Things

Telefónica LUCA was set up in 2016 to “enable corporate clients to understand their data and encourage a transparent and responsible use of that data”.

Before the creation of LUCA, Telefónica’s focus had been on developing assets and making acquisitions (e.g. Synergic Partners) to build strong internal capabilities around data and analytics – with some data monetisation capabilities housed within their Telefónica Digital unit (a global business unit selling products beyond connectivity, which was disbanded in 2016). Typical projects the team undertook related to using network data to make better decisioning for the network and marketing teams, and providing Telefónica Digital with external monetisation opportunities such as Smart Steps (aggregated, anonymised data for creation of vertical products) and Smart Digits (provision of consent-based data to the advertising industry).

Enter your details below to download an extract of the report

Creating the autonomous LUCA unit made a statement that Telefónica was serious about its strategy to offer data products to enterprise customers. Quoting from the original press release, “LUCA offered three lines of products and services:

The Business Insights area brings the value of anonymous and aggregated data on Telefónica’s networks for a wide range of clients. This includes Smart Steps, which is focused on mobility analysis solutions for more efficient planning. For example, to optimise transport networks and tourist management in cities, or in the case of a health emergency, in helping to better understand population movements and in limiting the spread of pandemics.

The analytical and external consultancy services for national and international clients will be provided by Synergic Partners, a company specialized in Big Data and Data Science which was acquired by Telefónica at the end of 2015.

Furthermore, LUCA will help its clients by providing BDaaS (Big Data as a Service) to empower clients to get the most out of their own data, using the Telefónica cloud infrastructure.”

The following table shows a timeline from the origins of LUCA in the Telefónica Digital business unit through to its merger into the Telefónica Tech AI of Things business in 2019 – illustrating the progression of its products and other major activities.

Timeline of Telefónica’s data monetisation business

Telefonica-data-monetisation-luca-AI-IoT

Source: STL Partners, Charlotte Patrick Consult

Points to note on the timeline above:

  • Telefónica stood out from its peers with the purchase of Synergic Partners in 2015 (bringing in 120 consultancy headcount). This provided not only another leg to the business with consulting capabilities, but also additional headcount to scope and sell their existing product sets.
  • Looking at the timeline, it took Telefónica two years from this purchase and the establishment LUCA to expand its portfolio. In 2018, a range of new, mainly IoT-related capabilities, were launched, built up from existing projects with individual customers.
  • Telefónica has added machine learning to its products across the timeframe, but in 2019 the development of NLP capability for use in Telefónica’s existing products, and an internal data science platform, were then productised for customers (see below discussion about its Aura product set).
  • As the number of products has expanded, the number of partnerships has also expanded, bringing specific platforms and capabilities which can be combined with Telefónica’s own data capabilities to provide added value (examples include CARTO which creates geographic visualisations of Telefónica’s data).
  • Looking at changing vertical priorities:
    • Telefónica has always been strong in the advertising sector, starting with products from O2 UK in 2012. The exact nature of what it has offered has changed over time and some capabilities have been sold, however, it still has a strong mobile marketing business and expects it data to become of more interest to brands/media agencies as the use of cookies diminishes across the next few years.
    • The retail sector offers opportunity, but has been challenging to target over the years. Although Telefónica has interesting data for retail companies, creating replicable products is challenging as the large retailers each have differing requirements and working with small cell data in-store can be expensive. The product set is therefore currently being simplified, as the pandemic has also reduced demand from retailers.

One of Telefónica’s key capabilities which is not clearly displayed in the timeline is the provision of services to the marketing teams of the various verticals it targets. These include analytics products which Telefónica has developed from its internal capabilities and other functionality such as pricing tools.

The formation of Telefónica Tech

In 2019, Telefónica LUCA became part of the newly formed, autonomous Telefónica Tech business unit. The organisation is split into two business areas: cybersecurity & cloud, and the assets from Telefónica LUCA combined with the IoT unit. The goal of Telefónica Tech is to:

  • Enable the financial markets to clearly see revenue progression. Telefónica’s stated aim is for sustained double digit growth, which it achieved with year-on-year growth of 13.6% in 2020, although the IoT and Big Data segment only grew 0.8% y-o-y in 2020, due to the impact of COVID-19 on IoT deployments, especially in retail. Showing signs of recovery, in H121 revenue growth in the IoT and Big Data segment rose to 8.1% y-o-y, and to 26% y-o-y for the whole of Telefónica Tech.
  • Coordinate innovation, particularly around post-pandemic opportunities such as remote working, e-health, e-commerce and digital transformation
  • Take advantage of global synergies and leveraging existing assets
  • Ease M&A and partnerships activity (it already has 300 partners to better reach new markets, including relations with 60 start-ups across products)
  • Build relationships with cloud providers (it has existing relationships with Microsoft, Google and SAP).

To better leverage existing assets, Telefónica LUCA was integrated with Telefónica’s IoT capabilities to create a more unified set of capabilities:

  1. IoT is seen as an enabling opportunity for AI, which can bring added value to Telefónica’s 10,000 IoT customers (with 35 million live IoT SIMs worldwide). Opportunities include provision of intelligence around “things” (for example, products to analyse sensor data) and then the addition of Business Insight services (i.e. analysis of aggregated, anonymised Telefónica data which adds further insight alongside the data coming from IoT devices).
  2. AI is now often a commodity discussion with C-Level prospects and Telefónica wishes to be seen as a strategic partner. Telefónica’s AI of Things proposition offers an execution layer and integration experts with security-by-design capabilities.
  3. Combining capabilities provides sales teams with an end-to-end value proposition, as the addition of AI is often complimentary to cloud transformation projects and the implementation of digital platforms.

There is a growing ecosystem in IoT and data which will generate more opportunities as both IoT solutions and ML/AI solutions mature, although it is not a straightforward decision for Telefónica on how to compete within this ecosystem.

Table of contents

  • Executive Summary
    • How successful has Telefónica been in data monetisation?
    • Learnings from Telefónica’s experience
    • Key success factors
    • Telefónica’s future strategy
  • Introduction
    • The origins of Telefónica Tech AI of Things
    • The formation of Telefónica Tech
  • Vision, mission and strategy
    • Scaling the business
    • Building a product set
    • Learnings from Telefónica Tech AI of Things
  • Organisational strategy
    • Where should the data monetisation team live?
    • Structure of Telefónica Tech AI of Things Team
    • External partnerships
    • Future plans
  • Data portfolio strategy
    • Tools and infrastructure
    • AI Suite
    • Vertical strategy
    • Product development beyond analytics
  • Conclusion and future moves

Related research

Enter your details below to download an extract of the report

A3 for enterprise: Where should telcos focus?

A3 capabilities operators can offer enterprise customers

In this research we explore the potential enterprise solutions leveraging analytics, AI and automation (A3) that telcos can offer their enterprise customers. Our research builds on a previous STL Partners report Telco data monetisation: What’s it worth? which modelled the financial opportunity for telco data monetisation – i.e. purely the machine learning (ML) and analytics component of A3 – for 200+ use cases across 13 verticals.

In this report, we expand our analysis to include the importance of different types of AI and automation in implementing the 200+ use cases for enterprises and assess the feasibility for telcos to acquire and integrate those capabilities into their enterprise services.

We identified eight different types of A3 capabilities required to implement our 200+ use cases.

These capability types are organised below roughly in order of the number of use cases for which they are relevant (i.e. people analytics is required in the most use cases, and human learning is needed in the fewest).

The ninth category, Data provision, does not actually require any AI or automation skills beyond ML for data management, so we include it in the list primarily because it remains an opportunity for telcos that do not develop additional A3 capabilities for enterprise.

Enter your details below to download an extract of the report

Most relevant A3 capabilities across 200+ use cases

9-types-of-A3-analytics-AI-automation

Most relevant A3 capabilities for leveraging enterprise solutions

People analytics: This is the strongest opportunity for telcos as it uses their comprehensive customer data. Analytics and machine learning are required for segmentation and personalisation of messaging or action. Any telco with a statistically-relevant market share can create products – although specialist sales capabilities are still essential.

IoT analytics: Although telcos offering IoT products do not immediately have access to the payload data from devices, the largest telcos are offering a range of products which use analytics/ML to detect patterns or spot anomalies from connected sensors and other devices.

Other analytics: Similar to IoT, the majority of other analytics A3 use cases are around pattern or anomaly detection, where integration of telco data can increase the accuracy and success of A3 solutions. Many of the use cases here are very specific to the vertical. For example, risk management in financial services or tracking of electronic prescriptions in healthcare – which means that a telco will need to have existing products and sales capability in these verticals to make it worthwhile adding in new analytics or ML capabilities.

Real time: These use cases mainly need A3 to understand and act on triggers coming from customer behaviour and have mixed appeal to telcos. Telcos already play a significant role in a small number of uses cases, such as mobile marketing. Some telcos are also active in less mature use cases such as patient messaging in healthcare settings (e.g. real-time reminders to take medication or remote monitoring of vulnerable adults). Of the rest of the use cases that require real time automation, a subset could be enhanced with messaging. This would primarily be attractive to mobile operators, especially if they offer broader relevant enterprise solutions – for example, if a telco was involved in a connected public transport solution, then it could also offer passenger messaging.

Remote monitoring/control: Solutions track both things and people and use A3 to spot issues, do diagnostic analysis and prescribe solutions to the problems identified. The larger telcos already have solutions in some verticals, and 5G may bring more opportunities, such as monitoring of remote sites or traffic congestion monitoring.

Video analytics: Where telcos have CCTV implementations or video, there is opportunity to add in analytics solutions (potentially at the edge).

Human interactions: The majority of telco opportunities here relate to the provision of chatbots into enterprise contact centres.

Human learning: A group of low feasibility use cases around training (for example, an engineer on a manufacturing floor who uses a heads-up augmented/virtual reality (AR/VR) display to understand the resolution to a problem in front of them) or information provision (for example, providing retail customers with information via AR applications).

 

Table of Contents

  • Executive Summary
    • Which A3 capabilities should telcos prioritise?
    • What makes an investment worthwhile?
    • Next steps
  • Introduction
  • Vertical opportunities
    • Key takeaways
  • A3 technology: Where should telcos focus?
    • Key takeaways
    • Assessing the telco opportunity for nine A3 capabilities
  • Verizon case study
  • Details of vertical opportunities
  • Conclusion
  • Appendix 1 – full list of 200 use cases

 

Enter your details below to download an extract of the report

DataSpark: Lessons on building a new telco (data) business

Data analytics as a new business

This case study looks at DataSpark, an autonomous business unit of Singtel (www.dsanalytics.com) and evaluates the benefits of creating a separate organisational structure within a telco to provide technology and support for the development of analytics, AI and automation as a new business. It is created after conversations with Shaowei Ying, Chief Operating Officer of DataSpark. The company’s activities include both the creation of internal capabilities and data monetisation capabilities for external customers.

DataSpark was formed in 2014 at a time when not many telcos were actively exploring new data business opportunities. The unit consisted of a small group of data professionals with skills around, particularly, location data. Singtel’s CEO was a strong supporter of leveraging telco data to establish competitive differentiation and therefore tasked them with looking at various location-related external monetisation opportunities. It was considered natural to create internal use cases for the data to defray the cost of the data preparation. In particular, the same mobility intelligence was of use to radio network planners optimising their network roll out using not just congestion, but now subscribers’ mobility patterns, too.

Enter your details below to request an extract of the report

DataSpark’s progress to date

Telcos’ external monetisation units, such as DataSpark, are not yet large enough to split out the revenues in their reports and accounts. However, in the 2018 and 2019 Management Discussion and Analysis DataSpark’s progress was reported to include:

  • Activity to bring mobility data to sectors such as transport and out-of-home media in Singapore and Australia
  • Partnership in out-of-home advertising with large players taking a data-as-a-service solution to optimise their assets
  • Provision of insights including first party enterprise data in the consumer goods sector to deliver new use cases in advertising and retail store inventory optimisation
  • Recent support for governments in predicting spread of Covid-19, including understanding the socio-economic impact of the virus.

Service example: COVID-19 insight for the Australian local government

COVID-19 data analytics innovation

Source: DataSpark

Table of Contents

  • Executive Summary
    • Two diverging strategies for a small, independent data unit
    • Scaling up the data business as an integrated unit
  • Introduction
    • DataSpark’s progress to date
  • DataSpark’s approach to building a data unit
    • What services does it offer?
    • Go-to-market: Different approaches for internal and external customers
    • Organisational structure: Where should a data unit go?
  • How to scale a data business?
    • The immediate growth opportunities
    • Following in others’ footsteps
    • Building new capabilities for external monetisation
  • Assessing future strategies for DataSpark
    • Scenario 1: Double down on internal data applications
    • Scenario 2: Continue building an independent business

 

Read more about STL Partners’ AI & automation research at stlpartners.com/ai-analytics-research/

Enter your details below to request an extract of the report

Telco data monetisation: What is it worth?

Data revenue opportunities are variable

Monetisation of telco data has been an area of activity for the last six years. However, telcos’ interest levels have varied over time due to the complexity of delivering and selling such a diverse range of products, as well as highly variable revenue opportunities depending on the vertical. Telcos’ appetite to pursue data monetisation has also been heavily impacted by the fortunes of other new telco products, in particular IoT, owing to the link between many data/analytics products and IoT solutions.

This report assesses the opportunity for telcos to monetise their data and provide associated data analytics products in two parts:

  1. First, we look at the range of products and services a telco needs to create in order to deliver financial value.
  2. Then, we explore the main use cases and actual financial value of telco data analytics products across 12 verticals, plus horizontal solutions that apply to multiple verticals.

Telco data monetisation: Calculation methodology

The methodology used to model the financial value of telco data analytics is outlined in the figure below.

  • The starting point for this analysis is 210 data or data analytics use cases, spread across 12 verticals and the horizontal solutions applicable to multiple verticals.
  • We then assess how difficult it is for a telco to address each use case, based on pre-requisite supporting platforms and solutions, regulatory constraints, etc. (shown in red). This evaluation enables us to assess how likely telcos are to develop products for each use case.
  • Thirdly, we assess which types of telco are able to develop the use case (in yellow). For example, telcos in a market with particularly restrictive regulation around use of personal data are simply not able to create certain products.
  • Finally, it is necessary to understand whether the data/analytics products created for a use case can be offered as an independent, standalone product, or more likely to be provided as a bolt-on service to another, pre-existing solution. This question is primarily pertinent in the IoT space where basic data/analytics are likely to be included in the price of the IoT service.
    • For products that we expect to be sold independently, we calculate the potential revenue based on estimated pricing for the type of data product, where known, and likely volumes that a telco will sell in a year.
    • For data analytics products closely linked to IoT, we attach no monetary value.

Calculation methodology for the feasibility and value of telco data monetisation use cases

Rationale behind data monetisation potential

Source: STL Partners, Charlotte Patrick Consult

Enter your details below to download an extract of the report

Viewing the data

Underlying the analysis in this report is a database tool including a detailed assessment of each of the 210 data monetisation use cases we have identified, with numerical analysis and charting capabilities. We know many of our readers will be interested to explore the detailed data, and so have made it available for download on the website in the form of an Excel spreadsheet.

Full use case database and analysis available on our website

Source: STL Partners

Table of Contents

  • Executive Summary
  • Introduction
    • Calculation methodology
  • What is this market worth to telcos?
  • Creating products for data monetisation
    • Telco products for the ecosystem
    • Data and analytics for IoT
    • Use of location in data monetisation
  • Maximising value in different verticals
    • Advertising and market research
    • Agriculture
    • Finance
    • Government
    • Insurance
    • Healthcare
    • Manufacturing
    • Real estate and construction
    • Retail
    • Telecom, media and technology
    • Transportation
    • Utilities
    • Horizontal solutions for all verticals
  • Conclusion and recommendations
    • How to pick a winning project
  • Index

Enter your details below to download an extract of the report

Telecoms data analytics – Where’s the real value?

Why telecoms data analtyics matters

Telecoms data analytics matter because telcos currently face big challenges. As connectivity services are increasingly commoditised, telcos are seeing a steady decline in core revenues. They are at risk of becoming seen as providers of basic utilities, rather than offering innovative services to their customers.

Improved analytics fuels benefits in multiple layers. Initially in the (human) management of operational performance, and then increasingly through using analytics and managed AI to control automation. This can apply to existing and new services.

Future-proofing: why data telecoms analytics are essential to today’s business, 5G and beyond

There is a lot of noise from the telecoms industry around fifth generation (5G) mobile networks and how 5G may provide a renewed source of revenue growth. There is no doubt that 5G will unlock new vertical opportunities for telcos, however, if telcos do not invest in developing additional services, revenues will primarily still come through connectivity. While some may gain a first-mover advantage, over time, 5G will experience the same diminishing returns per user that we have seen with previous generations (see Figure 1). 5G, through connectivity alone, is therefore likely to make only a short-term impact on telco revenue streams.

Figure 1: The effect of increasing 4G subscriber penetration on ARPUs

Source: Data from company filings, analysis by STL Partners

STL Partners has been writing about the commoditisation problem for many years and has seen that operators increasingly accept it as inevitable. Most, in one form or another, are looking beyond connectivity to improve the bottom line. Telcos are adopting two main strategies:

  • build or acquire new revenue streams outside of connectivity
  • cut costs.

The first of these is increasingly popular. Telcos worldwide have accepted the idea that they must develop new capabilities outside of their core service area and find ways to make money from them. These capabilities, and how well they link back to existing connectivity offers, vary widely. For example:

  • Some, realising telcos’ technical expertise, are developing end to end solutions based on new technologies such as multi-access edge computing and 5G. Although technologies such as 5G may not bring sustained growth through connectivity alone, they do offer the potential for telcos to access new areas of the value chain and derive new growth opportunities.
  • Some are developing new services in specific verticals. For example, TELUS in Canada and Telstra in Australia are both building service platforms in the healthcare sector, primarily through acquisitions of health-tech companies.

Unfortunately, due to heavy capex constraints and debt regulation, many telcos face challenges in investing in innovative technologies and only some have shown real success in building new offerings outside of traditional telecoms. All telcos are, however, implementing the second strategy, focussing on cutting costs and driving efficiencies throughout their organisations. Although exploring new verticals and areas of opportunity outside of connectivity is a must to drive sustained growth, in order to defend their territory against the likes of Amazon (who operate on razor thin margins), it is essential that telcos look internally and cut costs across their businesses.

While we see many variants and combinations of these two core strategies across the industry, there is one key element that ties them together. Operators are increasingly taking the view that the key to success – both in building new revenue streams and keeping costs down – is finding ways to make better use of data.

Through their networks and customer interactions, telcos collect a broad array of data. This data comes from both internal (for example data on network performance) and external (for example customer location data and usage data) sources. Telcos can extract and leverage insights from this data more accurately and more quickly through advanced analytics, informing key business decisions, creating efficiencies for internal processes, and unlocking data-enabled new service areas including the facilitation and adoption of technologies like 5G.

Building an advanced analytics capability

High ambitions: data and the AI continuum

When we talk with operators globally about data analytics, a key point of discussion is artificial intelligence (AI). “AI technology” is often cited as a powerful way to cut costs, increase ARPUs, and reduce churn – across an operator’s business. Indeed, at STL Partners we have written extensively about how this could be achieved. However, much of the discussion around AI in the industry is just that – discussion. Many AI solutions are still in their nascent phases and there is a lot more talk than live implementations that deliver measurable business value.

We raise two points to help cut through this hype and understand the real-world value for operators, both in the long and short-term.

  1. All AI is equal, but some AI is more equal than others”. It may seem out of place to paraphrase George Orwell, but the truth is that operators and vendors alike market an increasingly broad set of solutions to customers and the analyst community under the blanket term “AI” (“all AI is equal”). This is often misleading, if not erroneous. “AI” can mean different things depending on who you speak to, ranging from computers following simple instructions or rules set by humans, to more complex fully autonomous computer systems that learn and improve with limited human interaction (“but some AI is more equal than others”). These examples differ strongly – but both fit within a generic definition of “artificial intelligence”.

Agnostic of what you include in your definition of AI, there are clearly tiers of AI solution which are based on the algorithm’s complexity, its ability to implement decisions independently (in terms of rights/permissions and integration with automated processes), and the level of human interaction or guidance necessary. At STL Partners, we have written previously about how we see advanced data analytics and AI as a continuum, with stepping stones on a journey towards the fully autonomous telco (Figure 2) The detailed explanation and formulation of this continuum is more thoroughly explained in a previous instalment of our AI research series.

  1. Most live and scaled deployments fall under our definition of rules based automation. Operators speaking to us about AI tend to want focus on innovative AI use cases that fall in the right-hand side of Figure 2. Examples include automated and self-improving chatbots that can solve any customer query and translate a complaint into a sale, or self-healing networks that fix themselves with no need for engineers to intervene. It’s true that these use cases will deliver high-value for telcos and help to answer the big questions set out above. However, should telcos be prioritising these if their data systems cannot yet tell them which customers are having a poor experience, or give them a full, real-time view of network performance?

Where are operators compared to their AI aspirations

Source: STL Partners

In terms of real progress, we have seen only a handful of leading Tier 1 operators deploying telecoms data analytics solutions that truly fit under the ML/AI banner within our framework. Most operators are still much earlier on in the journey towards automation. Even those pioneer operators have deployed only in specific geographical regions and in specific parts of their business. They face problems in deploying more complex solutions at scale and deriving measurable value.

At STL Partners, we believe that too much focus on a poorly defined end-goal risks stalling necessary work that must be done up-front. Operators should strive for and research innovative uses of data, but we believe the focus in the short-term, for Tier 1 and 2/3 telcos alike, should be on laying the necessary groundwork to ensure that data is accessible and clean, with a clear governance structure, as well as building the analytics capabilities necessary to make full use of it.

Laying the groundwork: stepping stones toward data analytics

There are three key components to building even the most basic data analytics capabilities:

  1. Clean, unified data
  2. The skills and tools to process and analyse it
  3. The ambition and drive to do so – data-centricity

This may seem straightforward but telcos globally (including even the most advanced operators) have faced challenges in meeting these requirements. For example, 77% of the operators we have spoken to stated that data collection and management was a key issue for them in implementing an analytics strategy. Furthermore, over a third of the operators we spoke with mentioned a lack of both internal and external skills with regards to advanced analytics (see Figure 3).

Figure 3: Top 4 issues faced by telcos looking to make use of data

Source: STL Partners research programme, October 2018

In order to overcome the issues listed in Figure 3, and to build future-proof telecoms data analytics capabilities, telcos must develop the three components mentioned above. Without doing this in the short-term, operators will lack the underlying platform from which to springboard into developing innovative solutions that leverage AI or ML.

Contents:

  • Executive Summary
  • Future-proofing: what to do?
  • Building an advanced telecoms data analytics capability
  • High ambitions: data and the AI continuum
  • Laying the groundwork: stepping stones toward data analytics
  • In practice: Assessing real analytics use cases
  • Improve business as usual
  • Monetise user data
  • Enable next-generation services
  • Conclusions
  • Key recommendations
  • Conclusion

Figures:

  • Figure 1: The effect of increasing 4G subscriber penetration on ARPUs
  • Figure 2: The journey to AI and telco automation
  • Figure 3: Top 4 issues faced by telcos looking to make use of data
  • Figure 4: Telefónica’s data management structure across multiple opcos
  • Figure 5: What is your biggest challenge in leveraging analytics?
  • Figure 6: The opportunity areas for telcos in advanced analytics
  • Figure 7: A comparison of Iliad against the leading Italian operators
  • Figure 8: A graphical representation of KPN’s Data Services Hub
  • Figure 9: Where operators are compared to their AI aspirations