Pursuing hyperscale economics

The promise of hyperscale economics

Managing demands and disruption

As telecoms operators move to more advanced, data intensive services enabled by 5G, fibre to the X (FTTX) and other value-added services, they are looking to build the capabilities to support the growing demands on the network. However, in most cases, telco operators are expanding their own capabilities in such a way that results in their costs increasing in line with their capabilities.

Access a free copy of this report here

This is becoming an increasingly pressing issue given the commoditisation of traditional connectivity services and changing competitive dynamics from within and outside the telecoms industry. Telcos are facing stagnating or declining ARPUs within the telecoms sector as price becomes the competitive weapon and service differentiation of connectivity services diminishes.A

The competitive landscape within the telecoms industry is also becoming much more dynamic, with differences in progress made by telecoms operators adopting cloud-native technologies from a new ecosystem of vendors. At the same time, the rate of innovation is accelerating and revenue shares are being eroded due to the changes in the competitive landscape and the emergence of new competitors, including:

  • Greenfield operators like DISH and Rakuten;
  • More software-centric digital enterprise service providers that provide advanced innovative applications and services;
  • Content and SaaS players and the hyperscale cloud providers, such as AWS, Microsoft and Google, as well as the likes of Netflix and Disney.

We are in another transition period in the telco space. We’ve made a lot of mess in the past, but now everyone is talking about cloud-native and containers which gives us an opportunity to start over based on the lessons we‘ve learned.

VP Cloudified Production, European converged operator 1

Even for incumbents or established challengers in more closed and stable markets where connectivity revenues are still growing, there is still a risk of complacency for these telcos. Markets with limited historic competition and high barriers to entry can be prone to major systemic shocks or sudden unexpected changes to the market environment such as government policy, new 5G entrants or regulatory changes that mandate for structural separation.

Source:  Company accounts, stock market data; STL Partners analysis

Note: The data for the Telecoms industry covers 165 global telecoms operators

Telecoms industry seeking hyperscaler growth

The telecoms industry’s response to threats has traditionally been to invest in better networks to differentiate but networks have become increasingly commoditised. Telcos can no longer extract value from services that exclusively run on telecoms networks. In other words, the defensive moat has been breached and owning fibre or spectrum is not sufficient to provide an advantage. The value has now shifted from capital expenditure to the network-independent services that run over networks. The capital markets therefore believe it is the service innovators – content and SaaS players and internet giants such as Amazon, Microsoft or Apple – that will capture future revenue and profit growth, rather than telecoms operators. However, with 5G, edge computing and telco cloud, there has been a resurgence in interest in more integration between applications and the networks they run over to leverage greater network intelligence and insight to deliver enhanced outcomes.

Defining telcos’ roles in the Coordination Age

Given that the need for connectivity is not going away but the value is not going to grow, telcos are now faced with the challenge of figuring out what their new role and purpose is within the Coordination Age, and how they can leverage their capabilities to provide unique value in a more ecosystem-centric B2B2X environment.

Success in the Coordination Age requires more from the network than ever before, with a greater need for applications to interface and integrate with the networks they run over and to serve not only customers but also new types of partners. This calls for the need to not only move to more flexible, cost-effective and scalable networks and operations, but also the need to deliver value higher up in the value chain to enable further differentiation and growth.

Telcos can either define themselves as a retail business selling mobile and last mile connectivity, or figure out how to work more closely with demanding partners and customers to provide greater value. It is not just about scale or volume, but about the competitive environment. At the end of the day, telcos need to prepare for the capabilities to do innovative things like dynamic slicing.

Group Executive, Product and Technology, Asia Pacific operator

Responding to the pace of change

The introduction of cloud-native technologies and the promise of software-centric networking has the potential to (again) significantly disrupt the market and change the pace of innovation. For example, the hyperscale cloud providers have already disrupted the IT industry and are seen simultaneously as a threat, potential partners and as a model example for operators to adopt. More significantly, they have been able to achieve significant growth whilst still maintaining their agile operations, culture and mindset.

With the hyperscalers now seeking to play a bigger role in the network, many telco operators are looking to understand how they should respond in light of this change of pace, otherwise run the risk of being relegated to being just the connectivity provider or the ‘dumb pipe’.

Our report seeks to address the following key question:

Can telecoms operators realistically pursue hyperscale economics by adopting some of the hyperscaler technologies and practices, and if so, how?

Our findings in this report are based on an interview programme with 14 key leaders from telecoms operators globally, conducted from June to August 2021. Our participant group spans across different regions, operator types and types of roles within the organisation.

Related research

Telco Cloud Deployment Tracker: 5G core deep dive

Deep dive: 5G core deployments 

In this July 2022 update to STL Partners’ Telco Cloud Deployment Tracker, we present granular information on 5G core launches. They fall into three categories:

  • 5G Non-standalone core (5G NSA core) deployments: The 5G NSA core (agreed as part of 3GPP Release in December 2017), involves using a virtualised and upgraded version of the existing 4G core (or EPC) to support 5G New Radio (NR) wireless transmission in tandem with existing LTE services. This was the first form of 5G to be launched and still accounts for 75% of all 5G core network deployments in our Tracker.
  • 5G Standalone core (5G SA core) deployments: The SA core is a completely new and 5G-only core. It has a simplified, cloud-native and distributed architecture, and is designed to support services and functions such as network slicing, Ultra-Reliable Low-Latency Communications (URLLC) and enhanced Machine-Type Communications (eMTC, i.e. massive IoT). Our Tracker indicates that the upcoming wave of 5G core deployments in 2022 and 2023 will be mostly 5G SA core.
  • Converged 5G NSA/SA core deployments: this is when a dual-mode NSA and SA platform is deployed; in most cases, the NSA core results from the upgrade of an existing LTE core (EPC) to support 5G signalling and radio. The principle behind a converged NSA/SA core is the ability to orchestrate different combinations of containerised network functions, and automatically and dynamically flip over from an NSA to an SA configuration, in tandem – for example – with other features and services such as Dynamic Spectrum Sharing and the needs of different network slices. For this reason, launching a converged NSA/SA platform is a marker of a more cloud-native approach in comparison with a simple 5G NSA launch. Ericsson is the most commonly found vendor for this type of platform with a handful coming from Huawei, Samsung and WorkingGroupTwo. Albeit interesting, converged 5G NSA/SA core deployments remain a minority (7% of all 5G core deployments over the 2018-2023 period) and most of our commentary will therefore focus on 5G NSA and 5G SA core launches.

Enter your details below to request an extract of the report

75% of 5G cores are still Non-standalone (NSA)

Global 5G core deployments by type, 2018–23

  • There is renewed activity this year in 5G core launches since the total number of 5G core deployments so far in 2022 (effective and in progress) stands at 49, above the 47 logged in the whole of 2021. At the very least, total 5G deployments in 2022 will settle between the level of 2021 and the peak of 2020 (97).
  • 5G in whichever form now exists in most places where it was both in demand and affordable; but there remain large economies where it is yet to be launched: Turkey, Russia and most notably India. It also remains to be launched in most of Africa.
  • In countries with 5G, the next phase of launches, which will see the migration of NSA to SA cores, has yet to take place on a significant scale.
  • To date, 75% of all 5G cores are NSA. However, 5G SA will outstrip NSA in terms of deployments in 2022 and represent 24 of the 49 launches this year, or 34 if one includes converged NSA/SA cores as part of the total.
  • All but one of the 5G launches announced for 2023 are standalone; they all involve Tier-1 MNOs including Orange (in its European footprint involving Ericsson and Nokia), NTT Docomo in Japan and Verizon in the US.

The upcoming wave of SA core (and open / vRAN) represents an evolution towards cloud-native

  • Cloud-native functions or CNFs are software designed from the ground up for deployment and operation in the cloud with:​
  • Portability across any hardware infrastructure or virtualisation platform​
  • Modularity and openness, with components from multiple vendors able to be flexibly swapped in and out based on a shared set of compute and OS resources, and open APIs (in particular, via software ‘containers’)​
  • Automated orchestration and lifecycle management, with individual micro-services (software sub-components) able to be independently modified / upgraded, and automatically re-orchestrated and service-chained based on a persistent, API-based, ‘declarative’ framework (one which states the desired outcome, with the service chain organising itself to deliver the outcome in the most efficient way)​
  • Compute, resource, and software efficiency: as a concomitant of the automated, lean and logically optimal characteristics described above, CNFs are more efficient (both functionally and in terms of operating costs) and consume fewer compute and energy resources.​
  • Scalability and flexibility, as individual functions (for example, distributed user plane functions in 5G networks) can be scaled up or down instantly and dynamically in response to overall traffic flows or the needs of individual services​
  • Programmability, as network functions are now entirely based on software components that can be programmed and combined in a highly flexible manner in accordance with the needs of individual services and use contexts, via open APIs.​

Previous telco cloud tracker releases and related research

Each new release of the tracker is global, but is accompanied by an analytical report which focusses on trends in given regions from time to time:

Enter your details below to request an extract of the report

NFV Deployment Tracker: North American data and trends

Introduction

NFV in North America – how is virtualisation moving forward in telcos against global benchmarks?

Welcome to the sixth edition of the ‘NFV Deployment Tracker’

This report is the sixth analytical report in the NFV Deployment Tracker series and is intended as an accompaniment to the updated Tracker Excel spreadsheet.

This extended update covers seven months of deployments worldwide, from October 2018 to April 2019. The update also includes an improved spreadsheet format: a more user-friendly, clearer lay-out and a regional toggle in the ‘Aggregate data by region’ worksheet, which provides much quicker access to the data on each region separately.

The present analytical report provides an update on deployments and trends in the North American market (US, Canada and the Caribbean) since the last report focusing on that region (December 2017).

Scope, definitions and importance of the data

We include in the Tracker only verified, live deployments of NFV or SDN technology powering commercial services. The information is taken mainly from public-domain sources, such as press releases by operators or vendors, or reports in reputable trade media. However, a small portion of the data also derives from confidential conversations we have had with telcos. In these instances, the deployments are included in the aggregate, anonymised worksheets in the spreadsheet, but not in the detailed dataset listing deployments by operator and geography, and by vendor where known.

Our definition of a ‘deployment’, including how we break deployments down into their component parts, is provided in the ‘Explanatory notes’ worksheet, in the accompanying Excel document.

NFV in North America in global context

We have gathered data on 120 live, commercial deployments of NFV and SDN in North America between 2011 and April 2019. These were completed by 33 mainly Tier-One telcos and telco group subsidiaries: 24 based in the US, four in Canada, one Caribbean, three European (Colt, T-Mobile and Vodafone), and one Latin American (América Móvil). The data includes information on 217 known Virtual Network Functions (VNFs), functional sub-components and supporting infrastructure elements that have formed part of these deployments.

This makes North America the third-largest NFV/SDN market worldwide, as is illustrated by the comparison with other regions in the chart below.

Total NFV/SDN deployments by region, 2011 to April 2019

total NFV deployments by region North America Africa Asia-Pacific Europe Middle East

Source: STL Partners

Deployments of NFV in North America account for around 24% of the global total of 486 live deployments (or 492 deployments counting deployments spanning multiple regions as one deployment for each region). Europe is very marginally ahead on 163 deployments versus 161 for Asia-Pacific: both equating to around 33% of the total.

The NFV North America Deployment Tracker contains the following data, to May 2019:

  • Global aggregate data
  • Deployments by primary purpose
  • Leading VNFs and functional components
  • Leading operators
  • Leading vendors
  • Leading vendors by primary purpose
  • Above data points broken down by region
  • North America
  • Asia-Pacific
  • Europe
  • Latin America
  • Middle East
  • Africa
  • Detailed dataset on individual deployments

 

Contents of the accompanying analytical report:

  • Executive Summary
  • Introduction
  • Welcome to the sixth edition of the ‘NFV Deployment Tracker’
  • Scope, definitions and importance of the data
  • Analysis of NFV in North America
  • The North American market in global context
  • SD-WAN and core network functions are the leading categories
  • 5G is driving core network virtualisation
  • Vendor trends: Open source and operator self-builds outpace vendors
  • Operator trends: Verizon and AT&T are the clear leaders
  • Conclusion: Slow-down in enterprise platform deployments while 5G provides new impetus