Driving the agility flywheel: the stepwise journey to agile

Agility is front of mind, now more than ever

Telecoms operators today face an increasingly challenging market, with pressure coming from new non-telco competitors, the demands of unfamiliar B2B2X business models that emerge from new enterprise opportunities across industries and the need to make significant investments in 5G. As the telecoms industry undergoes these changes, operators are considering how best to realise commercial opportunities, particularly in enterprise markets, through new types of value-added services and capabilities that 5G can bring.

However, operators need to be able to react to not just near-term known opportunities as they arise but ready themselves for opportunities that are still being imagined. With such uncertainty, agility, with the quick responsiveness and unified focus it implies, is integral to an operator’s continued success and its ability to capitalise on these opportunities.

Traditional linear supply models are now being complemented by more interconnected ecosystems of customers and partners. Innovation of products and services is a primary function of these decentralised supply models. Ecosystems allow the disparate needs of participants to be met through highly configurable assets rather than waiting for a centralised player to understand the complete picture. This emphasises the importance of programmability in maximising the value returned on your assets, both in end-to-end solutions you deliver, and in those where you are providing a component of another party’s system. The need for agility has never been stronger, and this has accelerated transformation initiatives within operators in recent years.

Concepts of agility have crystallised in meaning

In 2015, STL Partners published a report on ‘The Agile Operator: 5 key ways to meet the agility challenge’, exploring the concept and characteristics of operator agility, including what it means to operators, key areas of agility and the challenges in the agile transformation. Today, the definition of agility remains as broad as in 2015 but many concepts of agility have crystallised through wider acceptance of the importance of the construct across different parts of the organisation.

Agility today is a pervasive philosophy of incremental innovation learned from software development that emphasises both speed of innovation at scale and carrier-grade resilience. This is achieved through cloud native modular architectures and practices such as sprints, DevOps and continuous integration and continuous delivery (CI/CD) – occurring in virtuous cycle we call the agility flywheel.

The Agility Flywheel

agility-flywheel

Source: STL Partners

Six years ago, operators were largely looking to borrow only certain elements of cloud native for adoption in specific pockets within the organisation, such as IT. Now, the cloud model is more widely embraced across the business and telcos profess ambitions to become software-centric companies.

Same problem, different constraints

Cloud native is the most fundamental version of the componentised cloud software vision and progress towards this ideal of agility has been heavily constrained by operators’ underlying capabilities. In 2015, operators were just starting to embark on their network virtualisation journeys with barriers such as siloed legacy IT stacks, inelastic infrastructures and software lifecycles that were architecture constrained. Though these barriers continue to be a challenge for many, the operators at the forefront – now unhindered by these basic constraints – have been driving a resurgence and general acceleration towards agility organisation-wide, facing new challenges around the unknowns underpinning the requirements of future capabilities.

With 5G, the network itself is designed as cloud native from the ground up, as are the leading edge of enterprise applications recently deployed by operators, alleviating by design some of the constraints on operators’ ability to become more agile. Uncertainty around what future opportunities will look like and how to support them requires agility to run deep into all of an operators’ processes and capabilities. Though there is a vast raft of other opportunities that do not need cloud native, ultimately the market is evolving in this direction and operators should benchmark ambitions on the leading edge, with a plan to get there incrementally. This report looks to address the following key question:

Given the flexibility and driving force that 5G provides, how can operators take advantage of recent enablers to drive greater agility and thrive in the current pace of change?

Enter your details below to request an extract of the report


 

 

Table of Contents

  • Executive Summary
  • Agility is front of mind, now more than ever
    • Concepts of agility have crystallised in meaning
    • Same problem, different constraints
  • Ambitions to be a software-centric business
    • Cloudification is supporting the need for agility
    • A balance between seemingly opposing concepts
  • You are only as agile as your slowest limb
    • Agility is achieved stepwise across three fronts
    • Agile IT and networks in the decoupled model
    • Renewed need for orchestration that is dynamic
    • Enabling and monetising telco capabilities
    • Creating momentum for the agility flywheel
  • Recommendations and conclusions

End-to-end network automation: Why and how to do it?

Automation, analytics and AI: A3 unlocks value for operators

STL Partners has been writing about automation, artificial intelligence (AI) and data analytics for several years. While the three have overlapping capabilities and often a single use case will rely upon a combination, they are also distinct in their technical outcomes.

Distinctions between the three As

Source: STL Partners

Operators have been heavily investing in A3 use cases for several years and are making significant progress. Efforts can be broadly broken down into five different domains: sales and marketing, customer experience, network planning and operations, service innovation and other operations. Some of these domains, such as sales and marketing and customer experience, are more mature, with significant numbers of use cases moving beyond R&D and PoCs into live, scaled deployments. In comparison, other domains, like service innovation, are typically less mature, despite the potential new revenue opportunities attached to them.

Five A3 use case domains

Source: STL Partners

Use cases often overlap across domains. For example, a Western European operator has implemented an advanced analytics platform that monitors network performance, and outputs a unique KPI that, at a per subscriber level, indicates the customer experience of the network. This can be used to trigger an automated marketing campaign to customers who are experiencing issues with their network performance (e.g. an offer for free mobile hotspot until issues are sorted). In this way, it spans both customer experience and network operations. For the purpose of this paper, however, we will primarily focus on automation use cases in the network domain.  We have modelled the financial value of A3 for telcos: Mapping the financial value.

Request a report extract

The time is ripe for network automation now

Network automation is not new. In fact, it’s been a core part of operator’s network capabilities since Almon Strowger invented the Strowger switch (in 1889), automating the process of the telephone exchange. Anecdotally, Strowger (an undertaker by profession) came up with this invention because the wife of a rival funeral parlour owner, working at the local community switchboard, was redirecting customers calling for Strowger to her own husband’s business.

Early advertising called the Strowger switch the “girl-less, cuss-less, out-of-order-less, wait-less telephone” or, in other words, free from human error and faster than the manual switchboard system. While this example is more than 100 years old, many of the benefits of automation that it achieved are still true today; automation can provide operators with the ability to deliver services on-demand, without the wait, and free from human error (or worse still, malevolent intent).

Despite automation not being a new phenomenon, STL Partners has identified six key reasons why network automation is something operators should prioritise now:

  • Only with automation can operators deliver the degree of agility that customers will demand. Customers today expect the kind of speed, accuracy and flexibility of service that can only be achieved in a cost-effective manner with high degrees of network automation. This can be both consumer customers (e.g. for next generation network services like VR/AR applications, gaming, high-definition video streaming etc.) or enterprise customers (e.g. for creating a network slice that is spun up for a weekend for a specific big event). With networks becoming increasingly customised, operators must automate their systems (across both OSS and BSS) to ensure that they can deliver these services without a drastic increase in their operating costs.
    One  wholesale operator exemplified this shift in expectations when describing their customers, which included several of the big technology companies including Amazon and Google: “They have a pace in their business that is really high and for us to keep up with their requirements and at the same time beat all our competitors we just need to be more automated”. They stated that while other customers may be more flexible and understand that instantiating a new service takes time, the “Big 5” expect services in hours rather than days and weeks.
  • Automation can enable operators to do more, such as play higher up the value chain. External partners have an expectation that telcos are highly skilled at handling data and are highly automated, particularly within the network domain. It is only through investing in internal automation efforts that operators will be able to position themselves as respected partners for services above and beyond pure connectivity. An example of success here would be the Finnish operator Elisa. They invested in automation capabilities for their own network – but subsequently have been able to monetise this externally in the form of Elisa Automate.
    A further example would be STL Partners’ vision of the Coordination Age. There is a role for telcos to play further up the value chain in coordinating across ecosystems – which will ultimately enable them to unlock new verticals and new revenue growth. The telecoms industry already connects some organisations and ecosystems together, so it’s in a strong position to play this coordinating role. But, if they wish to be trusted as ecosystem coordinators, they must first prove their pedigree in these core skills. Or, in other words, if you can’t automate your own systems, customers won’t trust you to be key partners in trying to automate theirs.
  • Automation can free up resource for service innovation. If operators are going to do more, and play a role beyond connectivity, they need to invest more in service innovation. Equally, they must also learn to innovate at a much lower cost, embracing automation alongside principles like agile development and fast fail mentalities. To invest more in service innovation, operators need to reallocate resources from other areas of their business – as most telcos are no longer rapidly growing, resource must be freed up from elsewhere.
    Reducing operating costs is a key way that operators can enable increased investment in innovation – and automation is a key way to achieve this.

A3 can drive savings to redistribute to service innovation

Source: Telecoms operator accounts, STL Partners estimates and analysis

  • 5G won’t fulfil its potential without automation. 5G standards mean that automation is built into the design from the bottom up. Most operators believe that 5G will essentially not be possible without being highly automated, particularly when considering next generation network services such as dynamic network slicing. On top of this, there will be a ranging need for automation outside of the standards – like for efficient cell-site deployment, or more sophisticated optimisation efforts for energy efficiency. Therefore, the capex investment in 5G is a major trigger to invest in automation solutions.
  • Intent-based network automation is a maturing domain. Newer technologies, like artificial intelligence and machine learning, are increasing the capabilities of automation. Traditional automation (such as robotic process automation or RPA) can be used to perform the same tasks as previously were done manually (such as inputting information for VPN provisioning) but in an automated fashion. To achieve this, rules-based scripts are used – where a human inputs exactly what it is they want the machine to do. In comparison, intent-based automation enables engineers to define a particular task (e.g. connectivity between two end-points with particular latency, bandwidth and security requirements) and software converts this request into lower level instructions for the service bearing infrastructure. You can then monitor the success of achieving the original intent.
    Use of AI and ML in conjunction with intent-based automation, can enable operators to move from automation ‘to do what humans can do but faster and more accurately’, to automation to achieve outcomes that could not be achieved in a manual way. ML and AI has a particular role to play in anomaly detection, event clustering and predictive analytics for network operations teams.
    While you can automate without AI and ML, and in fact for many telcos this is still the focus, this new technology is increasing the possibilities of what automation can achieve. 40% of our interviewees had network automation use cases that made some use of AI or ML.
  • Network virtualisation is increasing automation possibilities. As networks are increasingly virtualised, and network functions become software, operators will be afforded a greater ability than ever before to automate management, maintenance and orchestration of network services. Once networks are running on common computing hardware, making changes to the network is, in theory, purely a software change. It is easy to see how, for example, SDN will allow automation of previously human-intensive maintenance tasks. A number of operators have shared that their teams and/or organisations as a whole are thinking of virtualisation, orchestration and automation as coming hand-in-hand.

This report focuses on the opportunities and challenges in network automation. In the future, STL Partners will also look to more deeply evaluate the implications of network automation for governments and regulators, a key stakeholder within this ecosystem.

Table of Contents

  • Executive Summary
    • End-to-end network automation
    • A key opportunity: 6 reasons to focus on network automation now
    • Key recommendations for operators to drive their network automation journey
    • There are challenges operators need to overcome
    • This paper explores a range of network automation use cases
    • STL Partners: Next steps
  • Automation, analytics and AI: A3 unlocks value for operators
    • The time is ripe for network automation now
  • Looking to the future: Operators’ strategy and ambitions
    • Defining end-to-end automation
    • Defining ambitions
  • State of the industry: Network automation today
    • Which networks and what use cases: the breadth of network automation today
    • Removing the human? There is a continuum within automation use cases
    • Strategic challenges: How to effectively prioritise (network) automation efforts
    • Challenges to network automation– people and culture are key to success
  • Conclusions
    • Recommendations for vendors (and others in the ecosystem)
    • Recommendations for operators

Request STL research insights overview pack

Innovation Leaders: A Surprisingly Successful Telco API Programme

Introduction

The value of APIs

Application programming interfaces (APIs) are a central part of the mobile and cloud-based app economy. On the web, APIs serve to connect back-end and front-end applications (and their data) to one another. While often treated as a technical topic, APIs also have tremendous economic value. This was illustrated very recently when Oracle sued Google for copyright infringement over the use of Oracle-owned Java APIs during the development of Google’s Android operating system. Even though Google won the case, Oracle’s quest for around $9 billion showed the huge potential value associated with widely-adopted APIs.

The API challenge facing telcos…

For telcos, APIs represent an opportunity to monetise their unique network and IT assets by making them available to third-parties. This is particularly important in the context of declining ‘core’ revenues caused by cloud and content providers bypassing telco services. This so-called “over the top” (OTT) threat forces telcos to both partner with third-parties as well as create their own competing offerings in order to dampen the decline in revenues and profits. With mobile app ecosystems maturing and, increasingly, extending beyond smartphones into wearables, cars, TVs, virtual reality, productivity devices and so forth, telcos need to embrace these developments to avoid being a ‘plain vanilla’ connectivity provider – a low-margin low-growth business.

However, thriving in this co-opetitive environment is challenging for telcos because major digital players such as Google, Amazon, Netflix and Baidu, and a raft of smaller developers have an operating model and culture of agility and fast innovation. Telcos need to become easier to collaborate with and a systematic approach to API management and API exposure should be central to any telco partnership strategy and wider ‘transformation programme’.

…and Dialog’s best-practice approach

In this report, we will analyse how Dialog, Sri Lanka’s largest operator, has adopted a two-pronged API implementation strategy. Dialog has systematically exposed APIs:

  1. Externally in order to monetise in partnership with third-parties;
  2. Internally in order to foster agile service creation and reduce operational costs.

STL Partners believes that this two-pronged strategy has been instrumental in Dialog’s API success and that other operators should explore a similar strategy when seeking to launch or expand their API activities.

Dialog Axiata has steadily increased the number of API calls (indexed)

Source: Dialog Axiata

In this report, we will first cover the core lessons that can be drawn from Dialog’s approach and success and then we will outline in detail how Dialog’s Group CIO and Axiata Digital’s CTO, Anthony Rodrigo, and his team implemented APIs within the company and, subsequently, the wider Axiata Group.

 

  • Executive summary
  • Introduction
  • The value of APIs
  • The API challenge facing telcos…
  • …and Dialog’s best-practice approach
  • 5 key ‘telco API programme’ lessons
  • Background: What are APIs and why are they relevant to telcos?
  • API basics
  • API growth
  • The telecoms industry’s API track record is underwhelming
  • The Dialog API Programme (DAP)
  • Overview
  • Ideamart: A flexible approach to long-tail developer engagement
  • Axiata MIFE – building a multipurpose API platform
  • Drinking your own champagne : Dialog’s use of APIs internally
  • Expanding MIFE across Axiata opcos and beyond
  • Conclusion and outlook

 

  • Figure 1: APIs link backend infrastructure with applications
  • Figure 2: The explosive growth of open APIs
  • Figure 3: How a REST API works its magic
  • Figure 4: DAP service layers
  • Figure 5: Five APIs are available for Idea Pro apps
  • Figure 6: Idea Apps – pre-configured API templates
  • Figure 7: Ideadroid/Apptizer allows restaurants to specify food items they want to offer through the app
  • Figure 8: Ideamart’s developer engagement stats compare favourably to AT&T, Orange, and Vodafone
  • Figure 9: Steady increase in the number of API calls (indexed)
  • Figure 10: Dialog Allapps on Android
  • Figure 11: Ideabiz API platform for enterprise third-parties
  • Figure 12: Dialog Selfcare app user interface
  • Figure 13: Dialog Selfcare app functions – share in total number of hits
  • Figure 14: Apple App Store – Dialog Selfcare app ratings
  • Figure 15: Google Play Store – Dialog Selfcare app ratings
  • Figure 16: MIFE enables the creation of a variety of digital services – both internally and externally

Telco Cloud: Translating New Capabilities into New Revenue

If you don’t subscribe to our research yet, you can download the free report as part of our sample report series.

Preface

The telecoms industry is embracing network virtualisation and software defined networking, which are designed to both cut costs and enable greater agility. Whilst most operators have focused on the operating and capital cost benefits of virtualisation, few have attempted to define the range of potential new services that could be enabled by these new technologies and even fewer have attempted to forecast the associated revenue growth.

This report outlines:

  • Why and how network functions virtualisation (NFV), software defined networking (SDN) and distributed compute capabilities could generate new revenue growth for telcos.
  • The potential new services enabled by these technologies.
  • The revenue growth that a telco might hope to achieve.

This report does not discuss the cost, technical, organisational, market or regulatory challenges operators will need to overcome in making the transition to SDN and NFV. STL Partners (STL) also acknowledges that operators are still a long way from developing and launching some of the new services discussed in this paper, not least because they require capabilities that do not exist today. Nevertheless, by mapping the opportunity landscape for operators, this report should help to pave the way to fully capturing the transformative potential of SDN and NFV.

To sense-check our findings, STL has tested the proposed service concepts with the industry. The new services identified and modelled by STL were shared with approximately 25 telecoms operators. Hewlett Packard Enterprise (HPE) kindly commissioned and supported this research and testing programme.

However, STL wrote this report independently, and the views and conclusions contained herein are those of STL.

Introduction

The end of growth in telecoms…?

Most telecoms operators are facing significant competitive pressure from rival operators and players in adjacent sectors. Increased competition among telcos and Internet players has driven down voice and messaging revenues. Whilst demand for data services is increasing, STL forecasts that revenue growth in this segment will not offset the decline in voice and messaging revenue (see Figure 5).

 Figure 5: Illustrative forecast: revenue decline for converged telco in advanced market

Source: STL Partners analysis

Figure 5 shows STL forecasts for revenues over a six-year horizon for an illustrative converged telco operating in an advanced market. The telco, its market characteristics and the modelling mechanics are described in detail later in this report.

We believe that existing ‘digital’ businesses (representing consumer digital services, such as IPTV and managed services for enterprises) will not grow significantly on an organic basis over the next six years (unless operators are able to radically transform their business). Note, this forecast is for a converged telco (mobile and fixed) addressing both enterprise and consumer segments; we anticipate that revenues could face a steeper decline for non-converged, consumer-only or enterprise-only players.

Given that telcos’ cost structures are quite rigid, with high capex and opex requirements to manage infrastructure, the ongoing decline in core service revenue will continue to put significant pressure on the core business. As revenues decline, margins fall and telcos’ ability to invest in innovation is curbed, making it even harder to find new sources of revenue.

New technologies can be a catalyst for telco transformation

However, STL believes that new technologies have the potential to both streamline the telco cost structure and spur growth. In particular, network functions virtualisation (NFV) and software-defined networking (SDN) offer many potential benefits for telcos.

Virtualisation has the potential to generate significant cost savings for telcos. Whilst the process of managing a transition to NFV and SDN may be fraught with challenges and be costly, it should eventually lead to:

  • A reduction in capex – NFV will lead to the adoption of generic common-off-the-shelf (COTS) hardware. This hardware will be lower cost, able to serve multiple functions and will be more readily re-usable. Furthermore, operators will be less tied to vendors’ proprietary platforms, as functions will be more openly interchangeable. This will increase competition in the hardware and software markets, leading to an overall reduction in capital investment.
  • Reduction of opex through automation. Again, as services will be delivered via software there will be less cost associated with the on-going management and maintenance of the network infrastructure. The network will be more-centrally managed, allowing more efficient sharing of resources, such as space, power and cooling systems.
  • Product lifecycle management improvements through more integrated development and operations (devops)

In addition to cost savings, virtualisation can also allow operators to become more agile. This agility arises from two factors:

  1. The nature of the new infrastructure
  2. The change in cost structure

As the new infrastructure will be software-centric, as opposed to hardware-centric, greater levels of automation will be possible. This new software-defined, programmable infrastructure could also increase flexibility in the creation, management and provisioning of services in a way that is not possible with today’s infrastructure, leading to greater agility.

Virtualisation will also change the telco cost structure, potentially allowing operators to be less risk-averse and thereby become more innovative. Figure 6 below shows how virtualisation can impact the operating model of a telco. Through virtualisation, an infrastructure player becomes more like a platform or product player, with less capital tied-up in infrastructure (and the management of that infrastructure) and more available to spend on marketing and innovation.

Redefining the cost structure could help spur transformation across the business, as processes and culture begin to revolve less around fixed infrastructure investment and more-around software and innovation.

Figure 6: Virtualisation can redefine the cost structure of a telco

Source: STL Partners analysis

This topic is explored in detail in the recent Executive Briefings: Problem: Telecoms technology inhibits operator business model change (Part 1) and Solution: Transforming to the Telco Cloud Service Provider (Part 2).

 

  • Preface
  • Executive Summary
  • Introduction
  • The end of growth in telecoms…?
  • New technologies can be a catalyst for telco transformation
  • Defining ‘Telco Cloud’
  • How Telco Cloud enables revenue-growth opportunities for telcos
  • Connect services
  • Perform services
  • Capture, Analyse & Control services
  • Digital Agility services
  • Telco Cloud Services
  • Service Overview: Revenue vs. Ease of Implementation
  • 15 Service types defined (section on each)
  • The Revenue Opportunity
  • Model overview
  • Sizing the revenue potential from Telco Cloud services
  • Timeline for new service launch
  • Breaking down the revenues
  • Customer experience benefits
  • Conclusions
  • Appendix
  • Modelling Assumptions & Mechanics
  • Service Descriptions: Index of Icons

 

  • Figure 1: Defining Telco Cloud
  • Figure 2: Overview of Telco Cloud categories and services
  • Figure 3: Telco Cloud could boost revenues X% higher than the base case
  • Figure 4: Breakdown of Telco Cloud revenues in 2021
  • Figure 5: Illustrative forecast: revenue decline for converged telco in advanced market
  • Figure 6: Virtualisation can redefine the cost structure of a telco
  • Figure 7: Defining Telco Cloud
  • Figure 8: Telco Cloud Service Categories
  • Figure 9: Telco Cloud will enable immersive live VR experiences
  • Figure 10: Telco Cloud can enable two-way communication in real-time
  • Figure 11: Overview of Telco Cloud categories and services
  • Figure 12: Telco Cloud Services: Revenue versus ease of implementation
  • Figure 13: Telco X – Base case shows declining revenues
  • Figure 14: Telco X – Telco Cloud services increase monthly revenues by X% on the base case by Dec 2021
  • Figure 15: Telco X – Timeline of Telco Cloud service launch dates
  • Figure 16: Telco X (converged) – Net new revenue by service category (Dec 2021)
  • Figure 17: Telco Y (mobile only) – Net new revenue by service category (Dec 2021)
  • Figure 18 Telco Z (fixed only) – Net new revenue by service category (Dec 2021)
  • Figure 19: Modelling Mechanics

Digital Partnering: Success Factors and AT&T Drive Case Study

Introduction

As communications services providers continue their push to develop and monetise digital services, partnering is proving a critical element of strategy, and a key enabler for telco agility. While some telco-digital player partnerships have been successful in achieving their objectives, many have languished, and failed to deliver value to one or both parties within the partnership.

In this report, we examine the different types of digital services partnerships that operators are engaged in; discuss the key success factors for the various partnering approaches and strategies; and look more deeply at a successful partnership strategy: AT&T’s Drive connected car initiative, which is an example of a broad vertical-focused partnership ecosystem. Our follow-on report will provide a case study of TeliaSonera’s successful digital music partnership with Spotify, an example of a single-focus collaboration for digital services.

Telcos are increasingly recognising the importance of partnerships for achieving their potential as true digital services companies. Partnering between telcos and third parties to deliver new services or target new markets is, of course, not a new phenomenon. Two things are new, however: the focus on partnering as a core competency of the telco organisation, and the increasing complexity of telco partnership ecosystems, as digital services, enabling technologies and service delivery value chains continue to evolve. An agile approach to building and managing complex partnerships is one of the key elements of becoming a Telco 2.0 organisation.

Figure 1: The Telco 2.0 Agility Framework

Source: STL Partners

Partnering is being defined as a telco ‘core competence’

A number of operators have now enshrined the objective of successful partnering in their corporate strategy. Deutsche Telekom, for example, has made partnering one of its ‘four pillars’. The clearly-stated objective in DTAG’s case is to attract (and learn from) companies that have adopted the agile, rapid-response, high-energy approach found in Silicon Valley and other global tech hubs such as Israel. DTAG hopes to offer these partners, access to its customers and channels across the twelve DTAG European markets, as well as the ability to leverage DTAG’s network and corporate resources:

“The list of companies we have been working with for many years is long. But how we cooperate, that has changed. We are more open and faster. We focus on our core competence – our best net – and add specific offers of the partners. Take for example the eReader tolino: We not only provide the eReader, but also the technical platform on which Bertelsmann, Hugendubel, Thalia and Libri are able to distribute their eBooks. Together with the German book trade, we established the tolino as a model of success in the eReader market.

In the area Smart Home, we work together with Miele, Samsung, EON and EnBw, amongst others. We have started the system platform QIVICON, which our product DT Smart Home is based on. Together with our partners, we develop the vision of a connected house.”

Thomas Kiesling, Former Chief Product and Innovation Officer, Deutsche Telekom AG1

Partnering and partnerships are becoming more complex

The DTAG example highlights our second point about new aspects of partnering. The increasing complexity of digital services partnerships, and the growing trend for larger partnership ecosystems with many partners participating from different levels of the value chain, requires telcos to take a different and more flexible approach.

A potential digital services partner will usually want to build global scale and so is likely to have several telco partners. Digital services partners will in many cases move at very different speeds from telcos in terms of decision-making and processes, and are likely to use a variety of distribution channels, some of which will bypass, or compete with, the telco partner (particularly for OTT B2C content services such as Spotify). For both B2B and B2C partnerships, business models and revenue sharing arrangements are likely to be fluid and to involve multiple parties.

B2B (and B2B2C) services are increasingly being supported by more extensive and complex partnership ecosystems, rather than single partnerships. Telcos may lead the development of such ecosystems – as AT&T does in the case of Drive – or simply participate. The growth of wider ecosystem partnering relationships has been especially prevalent in the development of M2M/IoT propositions. These may require a variety of platforms, applications, devices and integration elements, as well as a high level of openness in terms of open-source and accessible platforms, APIs, analytics etc.

These trends present challenges for traditional telco approaches to partnering, which have favoured exclusive relationships and ‘what’s-in-it-for-me’ approaches to building joint revenue streams. Many telcos have set up digital or innovation arms with the goal of developing new digital propositions together with third parties in a more flexible manner. However, for such propositions to succeed, they need clear buy-in from one or more of the main divisions of the telco. In the case of AT&T, the successful partnering effort we profile here was ultimately rolled back into a main division of the operator, rather than continuing to sit within an innovation division.

Based on our observations from AT&T’s success and the partnership case study we cover in our follow-up report (TeliaSonera’s long-term relationship with Spotify), we have identified a set of key success factors, and major barriers, for effective digital services partnerships between operators and third parties (see Figure 2).

Figure 2: Key success factors and barriers for successful digital services partnering

Source: STL Partners

While it isn’t the case that all of the key success factors above must be present in successful operator partnering initiatives, our analysis suggests that several external and internal ones should be present in any digital services partnership.

In the next section, we discuss drivers for digital services partnering, approaches operators have used in partnering, key success factors and barriers; and evaluate the approach that AT&T has taken to partnering with the connected car.

Motivations for partnering in digital services

There are several compelling reasons for telcos to partner when exploring and growing digital services opportunities. The most important of these drivers are shown below in Figure 3. Each driver supports a set of higher-level objectives for telcos, comprising revenue growth, revenue retention, branding and positioning, and organisation transformation and/or agility.

Figure 3: Major drivers for telco digital services partnering initiatives

Source: STL Partners

Drivers linked to the objectives of revenue growth and retention may appear to be most compelling to telcos, given their obvious short-term impact; but those linked to transformation/agility and branding/positioning have been at the forefront of the AT&T partnership initiative we profile here as well as the TeliaSonera-Spotify partnership we profile in our follow-on report. The most successful partnerships support several telco objectives: part of their success is thus attributable to the support they engender from across the telco organisation.

As discussed in the following sections, beyond clearly defining the objectives of the partnership, and the assets that both parties bring to the table, there are a number of other soft elements that contribute to (or hinder) the success of telco digital services partnerships. The existence of clear market demand for the partnership’s products and services is also a key, though sometimes overlooked, element of success.

 

  • Executive Summary
  • Introduction
  • Partnering is being defined as a telco ‘core competence’
  • Partnering and partnerships are becoming more complex
  • Motivations for partnering in digital services
  • 4 digital services partnership approaches
  • Single-focus collaboration is easiest to manage and has best track record but impact is likely to be limited
  • Broader vertical focus requires greater commitment and has a greater market and implementation risk but can yield big benefits
  • General strategic partnerships appear to have had limited success
  • Key success factors for digital services partnerships
  • External/Market-Driven (demand-side) factors
  • Internal / organisation (supply-side) factors
  • Challenges to successful digital services partnering
  • External (demand side) challenges
  • Internal (supply-side) challenges
  • AT&T’s Drive Connected Car Ecosystem – A B2B2C Vertical Area Partnership
  • Background and context for the partnership
  • AT&T’s Drive Ecosystem
  • Key objectives and fit with the operator’s digital services strategy
  • Partnership approach and evolution
  • Organisation structure and framework for the partnership
  • Evidence of success
  • Key success factors and challenges
  • Barriers to successful partnering: challenges for Sprint and Verizon’s connected car initiatives

 

  • Figure 1: The Telco 2.0 Agility Framework
  • Figure 2: Key success factors and barriers for successful digital services partnering
  • Figure 3: Major drivers for telco digital services partnering initiatives
  • Figure 4: Telco Digital Services Partnership Models
  • Figure 5: US Connected Car Shipments, 2014-2020
  • Figure 6: AT&T Drive: Key End User Applications
  • Figure 7: AT&T Drive Studio, 2015
  • Figure 8: Drivers and objectives for AT&T’s connected car partnerships
  • Figure 9: AT&T Drive Platform Core Functionality and Applications
  • Figure 10: Opel OnStar Service Features, 2016
  • Figure 11: AT&T Drive Partnerships, Dec. 2015
  • Figure 12: AT&T connected car net adds are accelerating
  • Figure 13: Key Success Factors for AT&T Drive Partnerships (GM)

The Open Source Telco: Taking Control of Destiny

Preface

This report examines the approaches to open source software – broadly, software for which the source code is freely available for use, subject to certain licensing conditions – of telecoms operators globally. Several factors have come together in recent years to make the role of open source software an important and dynamic area of debate for operators, including:

  • Technological Progress: Advances in core networking technologies, especially network functions virtualisation (NFV) and software-defined networking (SDN), are closely associated with open source software and initiatives, such as OPNFV and OpenDaylight. Many operators are actively participating in these initiatives, as well as trialling their software and, in some cases, moving them into production. This represents a fundamental shift away from the industry’s traditional, proprietary, vendor-procured model.
    • Why are we now seeing more open source activities around core communications technologies?
  • Financial Pressure: However, over-the-top (OTT) disintermediation, regulation and adverse macroeconomic conditions have led to reduced core communications revenues for operators in both developed and emerging markets alike. As a result, operators are exploring opportunities to move away from their core, infrastructure business, and compete in the more software-centric services layer.
    • How do the Internet players use open source software, and what are the lessons for operators?
  • The Need for Agility: In general, there is recognition within the telecoms industry that operators need to become more ‘agile’ if they are to succeed in the new, rapidly-changing ICT world, and greater use of open source software is seen by many as a key enabler of this transformation.
    • How can the use of open source software increase operator agility?

The answers to these questions, and more, are the topic of this report, which is sponsored by Dialogic and independently produced by STL Partners. The report draws on a series of 21 interviews conducted by STL Partners with senior technologists, strategists and product managers from telecoms operators globally.

Figure 1: Split of Interviewees by Business Area

Source: STL Partners

Introduction

Open source is less optional than it once was – even for Apple and Microsoft

From the audience’s point of view, the most important announcement at Apple’s Worldwide Developer Conference (WWDC) this year was not the new versions of iOS and OS X, or even its Spotify-challenging Apple Music service. Instead, it was the announcement that Apple’s highly popular programming language ‘Swift’ was to be made open source, where open source software is broadly defined as software for which the source code is freely available for use – subject to certain licensing conditions.

On one level, therefore, this represents a clever engagement strategy with developers. Open source software uptake has increased rapidly during the last 15 years, most famously embodied by the Linux operating system (OS), and with this developers have demonstrated a growing preference for open source tools and platforms. Since Apple has generally pushed developers towards proprietary development tools, and away from third-party ones (such as Adobe Flash), this is significant in itself.

An indication of open source’s growth can be found in OS market shares in consumer electronics devices. As Figure 2 shows below, Android (open source) had a 49% share of shipments in 2014; if we include the various other open source OS’s in ‘other’, this increases to more than 50%.

Figure 2: Share of consumer electronics shipments* by OS, 2014

Source: Gartner
* Includes smartphones, tablets, laptops and desktop PCs

However, one of the components being open sourced is Swift’s (proprietary) compiler – a program that translates written code into an executable program that a computer system understands. The implication of this is that, in theory, we could even see Swift applications running on non-Apple devices in the future. In other words, Apple believes the risk of Swift being used on Android is outweighed by the reward of engaging with the developer community through open source.

Whilst some technology companies, especially the likes of Facebook, Google and Netflix, are well known for their activities in open source, Apple is a company famous for its proprietary approach to both hardware and software. This, combined with similar activities by Microsoft (who open sourced its .NET framework in 2014), suggest that open source is now less optional than it once was.

Open source is both an old and a new concept for operators

At first glance, open source also appears to now be less optional for telecoms operators, who traditionally procure proprietary software (and hardware) from third-party vendors. Whilst many (but not all) operators have been using open source software for some time, such as Linux and various open source databases in the IT domain (e.g. MySQL), we have in the last 2-3 years seen a step-change in operator interest in open source across multiple domains. The following quote, taken directly from the interviews, summarises the situation nicely:

“Open source is both an old and a new project for many operators: old in the sense that we have been using Linux, FreeBSD, and others for a number of years; new in the sense that open source is moving out of the IT domain and towards new areas of the industry.” 

AT&T, for example, has been speaking widely about its ‘Domain 2.0’ programme. Domain 2.0 has the objectives to transform AT&T’s technical infrastructure to incorporate network functions virtualisation (NFV) and software-defined networking (SDN), to mandate a higher degree of interoperability, and to broaden the range of alternative suppliers available across its core business. By 2020, AT&T hopes to virtualise 75% of its network functions, and it sees open source as accounting for up to 50% of this. AT&T, like many other operators, is also a member of various recently-formed initiatives and foundations around NFV and SDN, such as OPNFV – Figure 3 lists some below.

Figure 3: OPNFV Platinum Members

Source: OPNFV website

However, based on publicly-available information, other operators might appear to have lesser ambitions in this space. As ever, the situation is more complex than it first appears: other operators do have significant ambitions in open source and, despite the headlines NFV and SDN draw, there are many other business areas in which open source is playing (or will play) an important role. Figure 4 below includes three quotes from the interviews which highlight this broad spectrum of opinion:

Figure 4: Different attitudes of operators to open source – selected interview quotes

Source: STL Partners interviews

Key Questions to be Addressed

We therefore have many questions which need to be addressed concerning operator attitudes to open source software, adoption (by area of business), and more:

  1. What is open source software, what are its major initiatives, and who uses it most widely today?
  2. What are the most important advantages and disadvantages of open source software? 
  3. To what extent are telecoms operators using open source software today? Why, and where?
  4. What are the key barriers to operator adoption of open source software?
  5. Prospects: How will this situation change?

These are now addressed in turn.

  • Preface
  • Executive Summary
  • Introduction
  • Open source is less optional than it once was – even for Apple and Microsoft
  • Open source is both an old and a new concept for operators
  • Key Questions to be Addressed
  • Understanding Open Source Software
  • The Theory: Freely available, licensed source code
  • The Industry: Dominated by key initiatives and contributors
  • Research Findings: Evaluating Open Source
  • Open source has both advantages and disadvantages
  • Debunking Myths: Open source’s performance and security
  • Where are telcos using open source today?
  • Transformation of telcos’ service portfolios is making open source more relevant than ever…
  • … and three key factors determine where operators are using open source software today
  • Open Source Adoption: Business Critical vs. Service Area
  • Barriers to Telco Adoption of Open Source
  • Two ‘external’ barriers by the industry’s nature
  • Three ‘internal’ barriers which can (and must) change
  • Prospects and Recommendations
  • Prospects: An open source evolution, not revolution
  • Open Source, Transformation, and Six Key Recommendations
  • About STL Partners and Telco 2.0
  • About Dialogic

 

  • Figure 1: Split of Interviewees by Business Area
  • Figure 2: Share of consumer electronics shipments* by OS, 2014
  • Figure 3: OPNFV Platinum Members
  • Figure 4: Different attitudes of operators to open source – selected interview quotes
  • Figure 5: The Open IT Ecosystem (incl. key industry bodies)
  • Figure 6: Three Forms of Governance in Open Source Software Projects
  • Figure 7: Three Classes of Open Source Software License
  • Figure 8: Web Server Share of Active Sites by Developer, 2000-2015
  • Figure 9: Leading software companies vs. Red Hat, market capitalisation, Oct. 2015
  • Figure 10: The Key Advantages and Disadvantages of Open Source Software
  • Figure 11: How Google Works – Failing Well
  • Figure 12: Performance gains from an open source activation (OSS) platform
  • Figure 13: Intel Hardware Performance, 2010-13
  • Figure 14: Open source is more likely to be found today in areas which are…
  • Figure 15: Framework mapping current telco uptake of open source software
  • Figure 16: Five key barriers to telco adoption of open source software
  • Figure 17: % of employees with ‘software’ in their LinkedIn job title, Oct. 2015
  • Figure 18: ‘Waterfall’ and ‘Agile’ Software Development Methodologies Compared
  • Figure 19: Four key cultural attributes for successful telco transformation

How to be Agile: Agility by Design and Information Intensity

Background: The Telco 2.0 Agility Challenge

Agility is a highly desirable capability for telecoms operators seeking to compete and succeed in their core businesses and the digital economy in general. In our latest industry research, we found that most telco executives that responded rated their organisations as ‘moderately agile’, and identified a number of practical steps that telco management could and should take to improve agility.

The Definition and Value of Agility

In the Telco 2.0 Agility Challenge, STL Partners first researched with 29 senior telecoms operator executives a framework to define agility in the industry’s own terms, and then gathered quantitative input to benchmark the industry’s agility from 74 further executives via an online self-diagnosis tool. The analysis in this report examines the aggregate quantitative input of those executives.

The Telco 2.0 Agility framework comprises the five agility domains illustrated below.

Figure 4: The Telco 2.0 Agility Framework

Source: STL Partners, The ‘Agile Operator’: 5 Key Ways to Meet the Agility Challenge

  • Organisational Agility: Establish a more agile culture and mindset, allowing you to move at faster speeds and to innovate more effectively
  • Network Agility: Embrace new networking technologies/approaches to ensure that you provide the best experience for customers and manage your resources and investment more efficiently
  • Service Agility: Develop the capability to create products and services in a much more iterative manner, resulting in products that are developed faster, with less investment and better serve customer needs
  • Customer Agility: Provide customers with the tools to manage their service and use analytics to gain insight into customer behaviour to develop and refine services
  • Partnering Agility: Become a more effective partner by developing the right skills to understand and assess potential partnerships and ensure that the right processes/technologies are in place to make partnering as easy as possible

A key finding of the first stage was that all of the executives we spoke to considered achieving agility as very important or critical to their organisations’ success, as exemplified by this quote.

“It is fundamental to be agile. For me it is much more important than being lean – it is more than just efficiency.”

European Telco CTO

This research project was kindly sponsored by Ericsson. STL Partners independently created the methodology, questions, findings, analysis and conclusions.

Purpose of this report

This report details:

  • The headline findings of the Telco 2.0 Agility Challenge
  • The category winners
  • What are the lessons revealed about telco agility overall?
  • What do telcos need to address to improve their overall agility?
  • What can others do to help?

Key Findings

The Majority of Operators were ‘Moderately Agile’

Just over two thirds of respondents achieved a total score between 50%-75%. All of the twenty questions had 4 choices, so a score in this range means that for most of the questions these respondents were choosing the second or third option out of four choices increasing from the least to the most agile. The mean score achieved was 63% and the median 61%. This shows that most telcos believe they have some way to go before they would realistically consider themselves truly Agile by the definition set out in the benchmark.

Figure 5: Distribution of Total Agility Scores

Source: STL Partners Telco 2.0 Agility Challenge, n =74

Agility Champions

A further part of the Agility Challenge was to identify Agility Champions, who were recognised through Agility Domain Awards at TM Forum Live! in Nice in June. The winners of these prizes were additionally interviewed by STL Partners to check the evidence of their claims, and the winners were:

  • Telus, which won the Customer Agility Challenge Award. Telus adopted a Customer First initiative across the whole organization; this commitment to customers has led to both a significant increase in the ‘likelihood to recommend’ metric and a substantial reduction in customer complaints.
  • Zain Jordan, which won the Service Agility Challenge. Zain Jordan has achieved the speed and flexibility needed to differentiate itself in the marketplace through deployment of state-of-the-art, real time service enablement platforms and solutions. These are managed and operated by professional, specialized, and qualified teams, and are driving an increase in profitability and customer satisfaction.
  • Telecom Italia Digital Solutions, (TIDS) which won the Partnering Agility Challenge. TIDS have partnered effectively to deliver innovative digital services, including establishing and launching an IoT platform from scratch within 6 months. It is also developing and coordinating all the digital presence at the Expo Milan 2015.

Network Agility is hardest to achieve

Most respondents scored lower on Network Agility than the other domains, and we believe this is partly because the network criteria were harder to achieve (e.g. configuring networks in real time) but also that achieving meaningful agility in a network is as a rule harder than in the other areas.

Figure 6: Average Score by Agility Domain

Note: The maximum score was 4 and the minimum 1, with 4 = Strongly Agile, 3 = Mostly Agile, 2 = Somewhat Agile, and 1 = Not Agile.

Source: STL Partners, n = 74

Next Section: Looking Deeper

 

  • Executive Summary
  • Introduction
  • Background: The Telco 2.0 Agility Challenge
  • Purpose of this report
  • Key Findings
  • The Majority of Operators were ‘Moderately Agile’
  • Agility Champions
  • Network Agility is hardest to achieve
  • Looking Deeper
  • Organisational Agility: ‘Mindset’ is not enough
  • Information Agility is an important factor
  • If you had to choose One Metric that Matters (OMTM) it would be…
  • Conclusions

 

  • Figure 1: The Telco 2.0 Agility Framework
  • Figure 2: Respondents can be grouped into 3 types based on the level and nature of their organisational agility
  • Figure 3: Information Agility Sub-Segments
  • Figure 4: The Telco 2.0 Agility Framework
  • Figure 5: Distribution of Total Agility Scores
  • Figure 6: Average Score by Agility Domain
  • Figure 7: We were surprised that Organisational Agility was not a stronger indicator of Total Agility
  • Figure 8: Differences in Responses to Organisational Agility Questions
  • Figure 9: Organisational Agility a priori Segments and Scores
  • Figure 10: ‘Agile by Design’ Organisations Scored higher than others
  • Figure 11: Defining Information Agility Segments
  • Figure 12: The Information Agile Segment scored higher than the others

The ‘Agile Operator’: 5 Key Ways to Meet the Agility Challenge

Understanding Agility

What does ‘Agility’ mean? 

A number of business strategies and industries spring to mind when considering the term ‘agility’ but the telecoms industry is not front and centre… 

Agility describes the ability to change direction and move at speed, whilst maintaining control and balance. This innate flexibility and adaptability aptly describes an athlete, a boxer or a cheetah, yet this description can be (and is) readily applied in a business context. Whilst the telecoms industry is not usually referenced as a model of agility (and is often described as the opposite), a number of business strategies and industries have adopted more ‘agile’ approaches, attempting to simultaneously reduce inefficiencies, maximise the deployment of resources, learn though testing and stimulate innovation. It is worthwhile recapping some of the key ‘agile’ approaches as they inform our and the interviewees’ vision of agility for the telecoms operator.

When introduced, these approaches have helped redefine their respective industries. One of the first business strategies that popularised a more ‘agile’ approach was the infamous ‘lean-production’ and related ‘just-in-time’ methodologies, principally developed by Toyota in the mid-1900s. Toyota placed their focus on reducing waste and streamlining the production process with the mindset of “only what is needed, when it is needed, and in the amount needed,” reshaping the manufacturing industry.

The methodology that perhaps springs to many people’s minds when they hear the word agility is ‘agile software development’. This methodology relies on iterative cycles of rapid prototyping followed by customer validation with increasing cross-functional involvement to develop software products that are tested, evolved and improved repeatedly throughout the development process. This iterative and continuous improvement directly contrasts the waterfall development model where a scripted user acceptance testing phase typically occurs towards the end of the process. The agile approach to development speeds up the process and results in software that meets the end users’ needs more effectively due to continual testing throughout the process.

Figure 5: Agile Software Development

Source: Marinertek.com

More recently the ‘lean startup’ methodology has become increasingly popular as an innovation strategy. Similarly to agile development, this methodology also focuses on iterative testing (replacing the testing of software with business-hypotheses and new products). Through iterative testing and learning a startup is able to better understand and meet the needs of its users or customers, reducing the inherent risk of failure whilst keeping the required investment to a minimum. The success of high-tech startups has popularised this approach; however the key principles and lessons are not solely applicable to startups but also to established companies.

Despite the fact that (most of) these methodologies or philosophies have existed for a long time, they have not been adopted consistently across all industries. The digital or internet industry was built on these ‘agile’ principles, whereas the telecoms industry has sought to emulate this by adopting agile models and methods. Of course these two industries differ in nature and there will inevitably be constraints that affect the ability to be agile across different industries (e.g. the long planning and investment cycles required to build network infrastructure) yet these principles can broadly be applied more universally, underwriting a more effective way of working.

This report highlights the benefits and challenges of becoming more ‘agile’ and sets out the operator’s perspective of ‘agility’ across a number of key domains. This vision of the ‘Agile Operator’ was captured through 29 interviews with senior telecoms executives and is supplemented by STL analysis and research.

Barriers to (telco) agility 

…The telecoms industry is hindered by legacy systems, rigid organisational structures and cultural issues…

It is well known that the telecoms industry is hampered by legacy systems; systems that may have been originally deployed between 5-20 years ago are functionally limited. Coordinating across these legacy systems impedes a telco’s ability to innovate and customise product offerings or to obtain a complete view of customers. In addition to legacy system challenges, interview participants outlined a number of other key barriers to becoming more agile. Three principle barriers emerged:

  1. Legacy systems
  2. Mindset & Culture
  3. Organisational Structure & Internal Processes

Legacy Systems 

One of the main (and often voiced by interviewees) barriers to achieving greater agility are legacy systems. Dealing with legacy IT systems and technology can be very cumbersome and time-consuming as typically they are not built to be further developed in an agile way. Even seemingly simple change requests end in development queues that stretch out many months (often years). Therefore operators remain locked-in to the same, limited core capabilities and options, which in turn stymies innovation and agility. 

The inability to modify a process, a pricing plan or to easily on/off-board a 3rd-party product has significant ramifications for how agile a company can be. It can directly limit innovation within the product development process and indirectly diminish employees’ appetite for innovation.

It is often the case that operators are forced to find ‘workarounds’ to launch new products and services. These workarounds can be practical and innovative, yet they are often crude manipulations of the existing capabilities. They are therefore limited in terms what they can do and in terms of the information that can be captured for reporting and learning for new product development. They may also create additional technical challenges when trying to migrate the ‘workaround’ product or service to a new system. 

Figure 6: What’s Stopping Telco Agility?

Source: STL Partners

Mindset & Culture

The historic (incumbent) telco culture, born out of public sector ownership, is the opposite of an ‘agile’ mindset. It is one that put in place rigid controls and structure, repealed accountability and stymied enthusiasm for innovation – the model was built to maintain and scale the status quo. For a long time the industry invested in the technology and capabilities aligned to this approach, with notable success. As technology advanced (e.g. ever-improving feature phones and mobile data) this approach served telcos well, enhancing their offerings which in turn further entrenched this mindset and culture. However as technology has advanced even further (e.g. the internet, smartphones), this focus on proven development models has resulted in telcos becoming slow to address key opportunities in the digital and mobile internet ecosystems. They now face a marketplace of thriving competition, constant disruption and rapid technological advancement. 

This classic telco mindset is also one that emphasized “technical” product development and specifications rather than the user experience. It was (and still is) commonplace for telcos to invest heavily upfront in the creation of relatively untested products and services and then to let the product run its course, rather than alter and improve the product throughout its life.

Whilst this mindset has changed or is changing across the industry, interviewees felt that the mindset and culture has still not moved far enough. Indeed many respondents indicated that this was still the main barrier to agility. Generally they felt that telcos did not operate with a mindset that was conducive to agile practices and this contributed to their inability to compete effectively against the internet players and to provide the levels of service that customers are beginning to expect. 

Organisational Structure & Internal Processes

Organisational structure and internal processes are closely linked to the overall culture and mindset of an organisation and hence it is no surprise that interviewees also noted this aspect as a key barrier to agility. Interviewees felt that the typical (functionally-orientated) organisational structure hinders their companies’ ability to be agile: there is a team for sales, a team for marketing, a team for product development, a network team, a billing team, a provisioning team, an IT team, a customer care team, a legal team, a security team, a privacy team, several compliance teams etc.. This functional set-up, whilst useful for ramping-up and managing an established product, clearly hinders a more agile approach to developing new products and services through understanding customer needs and testing adoption/behaviour. With this set-up, no-one in particular has a full overview of the whole process and they are therefore not able to understand the different dimensions, constraints, usage and experience of the product/service. 

Furthermore, having these discrete teams makes it hard to collaborate efficiently – each team’s focus is to complete their own tasks, not to work collaboratively. Indeed some of the interviewees blamed the organisational structure for creating a layer of ‘middle management’ that does not have a clear understanding of the commercial pressures facing the organisation, a route to address potential opportunities nor an incentive to work outside their teams. This leads to teams working in silos and to a lack of information sharing across the organisation.

A rigid mindset begets a rigid organisational structure which in turn leads to the entrenchment of inflexible internal processes. Interviewees saw internal processes as a key barrier, indicating that within their organisation and across the industry in general internal decision-making is too slow and bureaucratic.

 

Interviewees noted that there were too many checks and processes to go through when making decisions and often new ideas or opportunities fell outside the scope of priority activities. Interviewees highlighted project management planning as an example of the lack of agility; most telcos operate against 1-2 year project plans (with associated budgeting). Typically the budget is locked in for the year (or longer), preventing the re-allocation of financing towards an opportunity that arises during this period. This inflexibility prevents telcos from quickly capitalising on potential opportunities and from (re-)allocating resources more efficiently.

  • Executive Summary
  • Understanding Agility
  • What does ‘Agility’ mean?
  • Barriers to (telco) agility
  • “Agility” is an aspiration that resonates with operators
  • Where is it important to be agile?
  • The Telco Agility Framework
  • Organisational Agility
  • The Agile Organisation
  • Recommended Actions: Becoming the ‘Agile’ Organisation
  • Network Agility
  • A Flexible & Scalable Virtualised Network
  • Recommended Actions: The Journey to the ‘Agile Network’
  • Service Agility
  • Fast & Reactive New Service Creation & Modification
  • Recommended Actions: Developing More-relevant Services at Faster Timescales
  • Customer Agility
  • Understand and Make it Easy for your Customers
  • Recommended Actions: Understand your Customers and Empower them to Manage & Customise their Own Service
  • Partnering Agility
  • Open and Ready for Partnering
  • Recommended Actions: Become an Effective Partner
  • Conclusion

 

  • Figure 1: Regional & Functional Breakdown of Interviewees
  • Figure 2: The Barriers to Telco Agility
  • Figure 3: The Telco Agility Framework
  • Figure 4: The Agile Organisation
  • Figure 5: Agile Software Development
  • Figure 6: What’s Stopping Telco Agility?
  • Figure 7: The Importance of Agility
  • Figure 8: The Drivers & Barriers of Agility
  • Figure 9: The Telco Agility Framework
  • Figure 10: The Agile Organisation
  • Figure 11: Organisational Structure: Functional vs. Customer-Segmented
  • Figure 12: How Google Works – Small, Open Teams
  • Figure 13: How Google Works – Failing Well
  • Figure 14: NFV managed by SDN
  • Figure 15: Using Big Data Analytics to Predictively Cache Content
  • Figure 16: Three Steps to Network Agility
  • Figure 17: Launch with the Minimum Viable Proposition – Gmail
  • Figure 18: The Key Components of Customer Agility
  • Figure 19: Using Network Analytics to Prioritise High Value Applications
  • Figure 20: Knowing When to Partner
  • Figure 21: The Telco Agility Framework