Fibre for 5G and edge: Who does it and how to build it?

Opportunities for fibre network operators

4G/5G densification and the growth in edge end points will place fresh demands on telecoms network infrastructure to deliver high bandwidth connections to new locations. Many of these will be sites on the streets of urban centres without existing connections, where installation of new fibre cables is costly. This will require careful planning and optimum selection of existing infrastructure to minimise costs and strengthen the business cases for fibre deployment.

While much of the growth in deployment of small cells and edge end points will be on private sites, their deployment in public areas, in support of public network services, will pose specific challenges to providing the broad bandwidth connectivity required. This includes both backhaul from cell sites and edge end points to the fibre transport network, plus any fronthaul needs for new open RAN deployments, from baseband equipment to radio units and antennas. In almost all cases this will entail installing new fibre in areas where laying a new duct is at its most expensive, although in a few cases fixed point-to-point radio links could be deployed instead.

Enter your details below to request an extract of the report

Global deployments of small cells and non-telco edge end points
in public areas

Source: Small Cell Forum, STL research and analysis

In addition, operators of 5G small cells and public cloud edge sites will require access to fibre links for backhaul to their core networks to provide the high bandwidths required. In some cases, they may need multiple fibres, especially if diverse paths are needed for security and resilience purposes.

Many newer networks have been built for a specific purpose, such as residential or business FTTP. Others are trunk routes to connect large businesses and data centres, and may serve local, regional, national or international areas. In addition, changing regulations have encouraged the creation of new businesses such as neutral hosts (also called “open access” for wholesale fibre) and, as a result, the supply side of the market is composed of an increasing variety of players. If this pattern were to continue, then it would very likely prove uneconomic to build dedicated networks for some applications, such as small cell densification or some standalone edge applications.

However, provided build qualities meet the required standard and costs can be contained there is no reason why networks deployed to address one market cannot be extended and repurposed to serve others. For new fibre builds being planned, it is also important to consider these new FTTX opportunities upfront and in some detail, rather than as an afterthought or just a throw-away bullet point on investor slide-decks.  

This report looks at the opportunities these developments offer to fibre network operators and considers the business cases that need to be made. It looks at the means and scope for minimising costs necessary to profitably satisfy the widest range of needs.

The fibre market is changing

FTTH/P has been largely satisfied in many countries, and even in slower markets such as the UK and Germany, the bulk of the network is expected to be in place by 2025/6 for most urban premises, at least on the basis of “homes passed”, if not actually connected.

By contrast the requirement of higher bandwidth connectivity for mobile base stations being upgraded from 3G to 4G and 5G is current and ongoing. Demand for links to small cells needed to support 5G densification, standalone edge, and smart city applications is only just beginning to appear and is likely to develop significantly over the next 10 years or more. In future high speed broadband links will be required to support an increasing range of applications for different organisations: for example, autonomous and semi-autonomous vehicle (V2X) applications operated by government or city authorities.

Both densification and edge will need local connections for fronthaul and backhaul as well as longer connections to provide backhaul to the core network. Building from scratch is expensive owing to the high costs associated with digging in the public highway, especially in urban centres. Digging can be complex, depending on the surfaces and buried services encountered, and extensions after the initial main build can be very expensive.

Laying fibre and ducts are a long-term investment and can usually be amortised over 15 to 20 years.  Nevertheless, network operators need to be sure of a good return on their investment and therefore need to find ways to minimise costs while maximising revenues. In markets with multiple players, there will also be a desire by potential acquisition targets to underscore their valuations, by maximising their addressable market, while reducing any post-merger remedial or expansion costs. Good planning, including watching for new opportunities and trends and the smart use of existing assets to minimise costs, can help ensure this.

  • Serving multiple markets through good forecasting and planning can help maximise revenues.
  • Operators and others can make use of various infrastructure assets to reduce costs, including incumbents’ physical duct/pole infrastructure sewers, disused water and hydraulic pipes, neutral hosts’ networks, council ducts, and traffic management ducts. Obviously these will not extend everywhere that fibre is required, but can make a meaningful contribution in many situations.

The remaining sections of this report examine in more detail the specific opportunities offered to fixed network operators, by densification of mobile base stations and growth of edge computing. It covers:

  • Market demand, including drivers of demand, and end users’ and the industry’s needs and options
  • The changing supply side and regulation
  • Technologies, build options and costs
  • How to maximise revenues and returns on investment.

Table of Contents

  • Executive Summary
  • Introduction
    • The fibre market is changing
  • Small cell and edge: Demand
    • Demand for small cells
    • Demand for edge end points
  • Small cell and edge: Supply
    • The changing network supply structure
  • Build options
    • Pros and cons of seven building options
  • How do they compare on costs?
  • Impact of regulation and policy
  • How to mitigate unforeseen costs
  • The business case
  • Conclusions
  • Index

Related Research

 

Enter your details below to request an extract of the report

6G: Hype versus reality

What is 6G and why does it matter?

Who’s driving the 6G discussion?

There already are numerous 6G visions, suggested use-cases and proposed technical elements. Many reflect vendors’ or universities’ existing specialist research domains or IPR in wireless, or look to entrench and extend existing commercial models and “locked-in” legacy technology stacks.

Others start from broad visions of UN development goals and policymakers’ desires for connected societies, and try to use these to frame and underpin 6G targets, even if the reality is that they will often be delivered by 5G, fibre or other technologies.

The stakeholder groups involved in creating 6G are wider than for 5G – governments, cloud hyperscalers / tech-co’s, industrial specialists, NGOs and many other groups seem more prominent than in the past, when the main drivers came from MNOs, large vendors and key academic clusters.

Over time, a process of iteration and “triangulation” will occur for 6G, initially starting with a wide funnel of ideas, which are now starting to coalesce into common requirements – and then to specific standards and underlying technical innovations. By around 2024-25 there should be more clarity, but at present there are still many directions that 6G could take.

What are they saying?

Discussions with and available material from parties interested in 6G discusses a wide range of new technologies (e.g. ultra-massive MIMO) and design goals (e.g. speeds of 1Tbps). These can be organised into six categories to provide a high-level set of futuristic statements that underpin the concept of 6G,  as articulated by the various 6G consortia and governing bodies:

  1. Provision of ultra-high data rate and ultra-low latency: Provision of up to 1Tbps speeds and as low as 1 microsecond latency – both outdoors and – implicitly at least – indoors.
  2. Use of new frequencies and interconnection of new network types: Efficient use of high, medium, and low-frequency bands, potentially including visible light and >100GHz and even THz spectrum. This will include possible coordination between non-terrestrial networks and other existing networks, and new types of radio and antenna to provide ubiquitous coverage in a dispersed “fabric” concept, rather than traditional discrete “cells”.
  3. Ultra-massive MIMO and ultra-flexible physical and control layers: The combination of ultra-large antenna arrays, intelligent surfaces, AI and new sensing technologies working in a range of frequency bands. This will depend on the deployment of a range of new technologies in the physical and control layers to increase coverage and speed, while reducing cost and power consumption.
  4. High resolution location: The ability to improve locational accuracy, potentially to centimetre-level resolutions, as well as the ability to find and describe objects in 3D orientation.
  5. Improved sensing capabilities: Ability to use 6Gradio signals for direct sensing applications such as radar, as well as for communications.
  6. General network concepts: A variety of topics including the concept of a distributed network architecture and a “network of networks” to improve network performance and coverage. This also includes more conceptual topics such as micro-networks and computing aware networks. Finally, there is discussion on tailoring 6Gfor use of / deployment by other industries beyond traditional telcos (“verticals”), such as enhancements for sectors including rail, broadcast, agriculture, utilities, among others, which may require specific features for coverage, sector-specific protocols or legacy interoperability.

Enter your details below to request an extract of the report

How is 6G different to 5G?

In reality, the boundaries between later versions of 5G and 6G are likely to be blurred, both in terms of the technology standards development and in the ways marketers present network products and services. As with 5G, the development of 6G will take time to reach many of the goals above. From 3GPP Release 18 onwards, 5G is officially being renamed as “5G Advanced”, mirroring a similar move in the later stages of 4G/LTE development. Rel18 standards are expected to be completed around the end of 2023, with preliminary Rel19 studies also currently underway. Rel20 and Rel21 will continue the evolution.

Figure 1: Roadmap for 6G

Source: Slides presented by Bharat B Bhatia President, ITU-APT Foundation of India at WWRF Huddle 2022

However, from 2024 onwards, the work done at 3GPP meetings and in its various groups will gradually shift from enhancing 5G to starting the groundwork for 6G – initially defining requirements in 2024-25, then creating “study items” in 2025-26. During that time, new additions to 5G in Rel20/21/22 will get progressively thinner as resources are devoted to 6G preparations.

The heavy lifting efforts on “work items” for 6G will probably start around 2026-27, with 5G Advanced output then dwindling to small enhancements or maintenance releases. It is still unclear what will get included in 5G Advanced, versus held over until 6G, but the main emphasis for 6G is likely to be on:

  • Greater performance and efficiency for mobile broadband, with attention paid to MIMO techniques, better uplink mechanisms and improved cell-to-cell handover
  • Additional features for specific verticals, as well as V2X deployments and IoT
  • Support of new spectrum bands
  • Improvements in mapping and positioning
  • Enhanced coverage and backhaul, for instance by establishing “daisy-chains” of cell sites and extensions and repeaters, including using 5Gfor backhaul and access
  • More intelligence and automation in the 5Gnetwork core, including improvements to slicing and orchestration
  • Better integration of non-terrestrial networks, typically using satellites or high-altitude platforms
  • Capabilities specifically aimed at AR/VR/XR
  • Direct device-to-device connections (also called “sidelink”) that allow communication without the need to go via a cell tower.

We can expect these 5G Advanced areas to also progress from requirements, to study, and then to work items during the period from 2022-27.

However, these features will mostly be an evolution of 5G, rather than a revolution by 5G. While there may be a few early moves on areas such as wireless sensing, Releases 18-21 are unlikely to include any radical breakthroughs. The topics we discuss elsewhere in this report, such as potential use of terahertz bands, blending of O-RAN principles of disaggregation, and new technology domains such as smart surfaces, will be solidly in the 6G era.

An important point here is that the official ITU standard for next-gen wireless, likely to be called IMT2030, is not the same as 3GPP’s branding of the cellular “generation”, or individual MNOs service names. There may well be early versions of 6G cellular, driven by market demand, that don’t quite match up to the ITU requirements. Ultimately 3GPP is an industry-led organisation, so may follow the path of expediency if there are urgent commercial opportunities or challenges.

In addition, based on the experience of 4G and 5G launches, it is probable that at least one MNO will try to call a 5G Advanced launch “6G” in their marketing. AT&T caused huge controversy – and even lawsuits – by calling a late version of LTE “5Ge” (5G evolution), even including the icons on some phones’ screens, while Verizon’s early 5G FWA systems were actually a proprietary pre-standard version of the technology.

If you’re a purist about these things – as we are – prepare to be howling in frustration around 2027-28 and describing new services as “fake 6G”.

Table of Contents

  • Executive Summary
    • What is 6G?
    • Key considerations for telcos and vendors around 6G
    • What should telcos and vendors do now?
    • 6G capabilities: Short-term focus areas
    • Other influencing factors
  • What is 6G and why does it matter?
    • Who’s driving the 6G discussion?
    • What are they saying?
    • The reality of moving from 5G Advanced to 6G
    • Likely roll out of 6G capabilities
  • Regulation and geopolitics
    • The expected impact of regulation and geopolitics
    • Summary of 6G consortiums and other interested parties
  • 6G products and services
  • Requirements for 6G
    • AI/ML in 6G
    • 6G security
    • 6G privacy
    • 6G sustainability
  • Drivers and barriers to 6G deployment
    • Short-term drivers
    • Short-term barriers
    • Long-term drivers
    • Long-term barriers
  • Conclusion: Realistic expectations for 6G
    • The reality: What we know for certain about 6G / IMT2030
    • Possibilities: Focus areas for 6G development
    • The hype: Highly unlikely or impossible by 2030

Related research

 

Enter your details below to request an extract of the report

Network convergence: How to deliver a seamless experience

Operators need to adapt to the changing connectivity demands post-COVID19

The global dependency on consistent high-performance connectivity has recently come to the fore as the COVID-19 outbreak has transformed many of the remaining non-digital tasks into online activities.

The typical patterns of networking have broken and a ‘new normal’, albeit possibly a somewhat transitory one, is emerging. The recovery of the global economy will depend on governments, healthcare providers, businesses and their employees robustly communicating and gaining uninhibited access to content and cloud through their service providers – at any time of day, from any location and on any device.

Reliable connectivity is a critical commodity. Network usage patterns have shifted more towards the home and remote working. Locations which were previously light-usage now have high demands. Conversely, many business locations no longer need such high capacity. Utilisation is not expected to return to pre-COVID-19 patterns either, as people and businesses adapt to new daily routines – at least for some time.

The strategies with which telcos started the year have of course been disrupted with resources diverted away from strategic objectives to deal with a new mandate – keep the country connected. In the short-term, the focus has shifted to one which is more tactical – ensuring customer satisfaction through a reliable and adaptable service with rapid response to issues. In the long-term, however, the objectives for capacity and coverage remain. Telcos are still required to reach national targets for a minimum connection quality in rural areas, whilst delivering high bandwidth service demands in hotspot locations (although these hotspot locations might now change).

Of course, modern networks are designed with scalability and adaptability in mind – some recent deployments from new disruptors (such as Rakuten) demonstrate the power of virtualisation and automation in that process, particularly when it comes to the radio access network (RAN). In many legacy networks, however, one area which is not able to adapt fast enough is the physical access. Limits on spectrum, coverage (indoors and outdoors) and the speed at which physical infrastructure can be installed or updated become a bottleneck in the adaptation process. New initiatives to meet home working demand through an accelerated fibre rollout are happening, but they tend to come at great cost.

Network convergence is a concept which can provide a quick and convenient way to address this need for improved coverage, speed and reliability in the access network, without the need to install or upgrade last mile infrastructure. By definition, it is the coming-together of multiple network assets, as part of a transformation to one intelligent network which can efficiently provide customers with a single, unified, high-quality experience at any time, in any place.

It has already attracted interest and is finding an initial following. A few telcos have used it to provide better home broadband. Internet content and cloud service providers are interested, as it adds resilience to the mobile user experience, and enterprises are interested in utilising multiple lower cost commodity backhauls – the combination of which benefits from inherent protection against costly network outages.

Enter your details below to request an extract of the report

Network convergence helps create an adaptable and resilient last mile

Most telcos already have the facility to connect with their customers via multiple means; providing mobile, fixed line and public Wi-Fi connectivity to those in their coverage footprint. The strategy has been to convert individual ‘pure’ mobile or fixed customers into households. The expectation is that this creates revenue increase through bundling and loyalty whilst bringing some added friction into the ability to churn – a concept which has been termed ‘convergence’. Although the customer may see one converged telco through brand, billing and customer support, the delivery of a consistent user experience across all modes of network access has been lacking and awkward. In the end, it is customer dissatisfaction which drives churn, so delivering a consistent user experience is important.

Convergence is a term used to mean many different things, from a single bill for all household connectivity, to modernising multiple core networks into a single efficient core. While most telcos have so far been concentrating on increasing operational efficiency, increasing customer loyalty/NPS and decreasing churn through some initial aspects of convergence, some are now looking into network convergence – where multiple access technologies (4G, 5G, Wi-Fi, fixed line) can be used together to deliver a resilient, optimised and consistent network quality and coverage.

Overview of convergence

Source: STL Partners

As an overarching concept, network convergence introduces more flexibility into the access layer. It allows a single converged core network to utilise and aggregate whichever last mile connectivity options are most suited to the environment. Some examples are:

  • Hybrid Access: DSL and 4G macro network used together to provide extra speed and fallback reliability in hybrid fixed/mobile home gateways.
  • Cell Densification: 5G and Wi-Fi small cells jointly providing short range capacity to augment the macro network in dense urban areas.
  • Fixed Wireless Access: using cellular as a fibre alternative in challenging areas.

The ability to combine various network accesses is attractive as an option for improving adaptability, resilience and speed. Strategically, putting such flexibility in place can support future growth and customer retention with the added advantage of improving operational efficiency. Tactically, it enables an ability to quickly adapt resources to short-term changes in demand. COVID-19 has been a clear example of this need.

Table of Contents

  • Executive Summary
    • Convergence and network convergence
    • Near-term benefits of network convergence
    • Strategic benefits of network convergence
    • Balancing the benefits of convergence and divergence
    • A three-step plan
  • Introduction
    • The changing environment
    • Network convergence: The adaptable and resilient last mile
    • Anticipated benefits to telcos
    • Challenges and opposing forces
  • The evolution to network convergence
    • Everyone is combining networks
    • Converging telco networks
    • Telco adoption so far
  • Strategy, tactics and hurdles
    • The time is right for adaptability
    • Tactical motivators
    • Increasing the relationship with the customer
    • Modernisation and efficiency – remaining competitive
    • Hurdles from within the telco ecosystem
    • Risk or opportunity? Innovation above-the-core
  • Conclusion
    • A three-step plan
  • Index

Enter your details below to request an extract of the report

 

 

Indoor wireless: A new frontier for IoT and 5G

Introduction to Indoor Wireless

A very large part of the usage of mobile devices – and mobile and other wireless networks – is indoors. Estimates vary but perhaps 70-80% of all wireless data is used while fixed or “nomadic”, inside a building. However, the availability and quality of indoor wireless connections (of all types) varies hugely. This impacts users, network operators, businesses and, ultimately, governments and society.

Whether the use-case is watching a YouTube video on a tablet from a sofa, booking an Uber from a phone in a company’s reception, or controlling a moving robot in a factory, the telecoms industry needs to give much more thought to the user-requirements, technologies and obstacles involved. This is becoming ever more critical as sensitive IoT applications emerge, which are dependent on good connectivity – and which don’t have the flexibility of humans. A sensor or piece of machinery cannot move and stand by a window for a better signal – and may well be in parts of a building that are inaccessible to both humans and many radio transmissions.

While mobile operators and other wireless service providers have important roles to play here, they cannot do everything, everywhere. They do not have the resources, and may lack site access. Planning, deploying and maintaining indoor coverage can be costly.

Indeed, the growing importance and complexity is such that a lot of indoor wireless infrastructure is owned by the building or user themselves – which then brings in further considerations for policymakers about spectrum, competition and more. There is a huge upsurge of interest in both improved Wi-Fi, and deployments of private cellular networks indoors, as some organisations recognise connectivity as so strategically-important they wish to control it directly, rather than relying on service providers. Various new classes of SP are emerging too, focused on particular verticals or use-cases.

In the home, wireless networks are also becoming a battleground for “ecosystem leverage”. Fixed and cable networks want to improve their existing Wi-Fi footprint to give “whole home” coverage worthy of gigabit fibre or cable connections. Cellular providers are hoping to swing some residential customers to mobile-only subscriptions. And technology firms like Google see home Wi-Fi as a pivotal element to anchor other smart-home services.

Large enterprise and “campus” sites like hospitals, chemical plants, airports, hotels and shopping malls each have complex on-site wireless characteristics and requirements. No two are alike – but all are increasingly dependent on wireless connections for employees, visitors and machines. Again, traditional “outdoors” cellular service-providers are not always best-placed to deliver this – but often, neither is anyone else. New skills and deployment models are needed, ideally backed with more cost—effective (and future-proofed) technology and tools.

In essence, there is a conflict between “public network service” and “private property” when it comes to wireless connectivity. For the fixed network, there is a well-defined “demarcation point” where a cable enters the building, and ownership and responsibilities switch from telco to building owner or end-user. For wireless, that demarcation is much harder to institutionalise, as signals propagate through walls and windows, often in unpredictable and variable fashion. Some large buildings even have their own local cellular base stations, and dedicated systems to “pipe the signal through the building” (distributed antenna systems, DAS).

Where is indoor coverage required?

There are numerous sub-divisions of “indoors”, each of which brings its own challenges, opportunities and market dynamics:

• Residential properties: houses & apartment blocks
• Enterprise “carpeted offices”, either owned/occupied, or multi-tenant
• Public buildings, where visitors are more numerous than staff (e.g. shopping malls, sports stadia, schools), and which may also have companies as tenants or concessions.
• Inside vehicles (trains, buses, boats, etc.) and across transport networks like metro systems or inside tunnels
• Industrial sites such as factories or oil refineries, which may blend “indoors” with “onsite”

In addition to these broad categories are assorted other niches, plus overlaps between the sectors. There are also other dimensions around scale of building, single-occupant vs. shared tenancy, whether the majority of “users” are humans or IoT devices, and so on.

In a nutshell: indoor wireless is complex, heterogeneous, multi-stakeholder and often expensive to deal with. It is no wonder that most mobile operators – and most regulators – focus on outdoor, wide-area networks both for investment, and for license rules on coverage. It is unreasonable to force a telco to provide coverage that reaches a subterranean, concrete-and-steel bank vault, when their engineers wouldn’t even be allowed access to it.

How much of a problem is indoor coverage?

Anecdotally, many locations have problems with indoor coverage – cellular networks are patchy, Wi- Fi can be cumbersome to access and slow, and GPS satellite location signals don’t work without line- of-sight to several satellites. We have all complained about poor connectivity in our homes or offices, or about needing to stand next to a window. With growing dependency on mobile devices, plus the advent of IoT devices everywhere, for increasingly important applications, good wireless connectivity is becoming more essential.

Yet hard data about indoor wireless coverage is also very patchy. UK regulator Ofcom is one of the few that reports on availability / usability of cellular signals, and few regulators (Japan’s is another) enforce it as part of spectrum licenses. Fairly clearly, it is hard to measure, as operators cannot do systematic “drive tests” indoors, while on-device measurements usually cannot determine if they are inside or outside without being invasive of the user’s privacy. Most operators and regulators estimate coverage, based on some samples plus knowledge of outdoor signal strength and typical building construction practices. The accuracy (and up-to-date assumptions) is highly questionable.

Indoor coverage data is hard to find

Contents:

  • Executive Summary
  • Likely outcomes
  • What telcos need to do
  • Introduction to Indoor Wireless
  • Overview
  • Where is indoor coverage required?
  • How much of a problem is indoor coverage?
  • The key science lesson of indoor coverage
  • The economics of indoor wireless
  • Not just cellular coverage indoors
  • Yet more complications are on the horizon…
  • The role of regulators and policymakers
  • Systems and stakeholders for indoor wireless
  • Technical approaches to indoor wireless
  • Stakeholders for indoor wireless
  • Home networking: is Mesh Wi-Fi the answer?
  • Is outside-in cellular good enough for the home on its own?
  • Home Wi-Fi has complexities and challenges
  • Wi-Fi innovations will perpetuate its dominance
  • Enterprise/public buildings and the rise of private cellular and neutral host models
  • Who pays?
  • Single-operator vs. multi-operator: enabling “neutral hosts”
  • Industrial sites and IoT
  • Conclusions
  • Can technology solve MNO’s “indoor problem”?
  • Recommendations

Figures:

  • Indoor coverage data is hard to find
  • Insulation impacts indoor penetration significantly
  • 3.5GHz 5G might give acceptable indoor coverage
  • Indoor wireless costs and revenues
  • In-Building Wireless face a dynamic backdrop
  • Key indoor wireless architectures
  • Different building types, different stakeholders
  • Whole-home meshes allow Wi-Fi to reach all corners of the building
  • Commercial premises now find good wireless essential
  • Neutral Hosts can offer multi-network coverage to smaller sites than DAS
  • Every industrial sector has unique requirements for wireless