The Telco Cloud Manifesto 2.0

Nearly two years on from our first Telco Cloud Manifesto published in March 2021, we are even more convinced that going through the pain of learning how to orchestrate and manage network workloads in a cloud-native environment is essential for telcos to successfully create new business models, such as Network-as-a-Service in support of edge compute applications.

Since the first Manifesto, hyperscalers have emerged as powerful partners and enablers for telcos’ technology transformation. But telcos that simply outsource to hyperscalers the delivery and management of their telco cloud, and of the multi-vendor, virtualised network functions that run on it, will never realise the true potential of telco cloudification. By contrast, evolving and maintaining an ability to orchestrate and manage multi-vendor, virtualised network functions end-to-end across distributed, multi-domain and multi-vendor infrastructure represents a vital control point that telcos should not surrender to the hyperscalers and vendors. Doing so could relegate telcos to a role as mere physical connectivity and infrastructure providers helping to deliver services developed, marketed and monetised by others.

In short, operators must take on the ‘workload’ of transforming into and acting as cloud-centric organisations before they shift their ‘workloads’ to the hyperscale cloud. In this updated Manifesto, we outline why, and what telcos at different stages of maturity should prioritise.

Two developments have taken place since the publication of our first manifesto that have changed the terms on which telcos are addressing network cloudification:

  • Hyperscale cloud providers have increasingly developed capabilities and commercial offers in the area of telco cloud. To telcos uncertain about the strategy and financial implications of the next phase of their investments, the hyperscalers appear to offer a shortcut to telco cloud: the possibility of avoiding doing all the hard yards of developing the private telco cloud, and of evolving the internal skills and processes for deploying and managing multi-vendor VNFs / CNFs over it. Instead, the hyperscalers offer the prospect of getting telco cloud and VNFs / CNFs on an ‘as-a-Service’ basis – fundamentally like any other cloud service.
  • In April 2021, DISH announced it would build its greenfield 5G network with AWS providing much of the virtual infrastructure layer and all of the physical cloud infrastructure. In June 2021, AT&T sold its private telco cloud platform to Microsoft Azure. In both instances, the telcos involved are now deploying mobile core network functions and, in DISH’s case, all of the software-based functions of its on a hyperscale cloud. These events appear superficially to set an example validating the idea of outsourcing telco cloud to the hyperscalers. After all, AT&T had previously been a champion of the DIY approach to telco cloud but now looked as though it had thrown in the towel and gone all in with outsourcing its cloud from Azure.

Two main questions arise from these developments, which we address in detail in this second Manifesto:

  • Should telcos embarked or embarking on a Pathway 2 strategy outsource their telco cloud infrastructure and procure their critical network functions – in whole or in part – from one or more hyperscalers, on an as-a-Service basis?
  • What is the broader significance of AT&T’s and DISH’s moves? Does it represent the logical culmination of telco cloudification and, if so, what are the technological and business-model characteristics of the ‘infrastructure-independent, cloud-native telco’, as we define this new Pathway 4? Finally, is this a model that all Pathway 3 players – and even all telcos per se – should ultimately seek to emulate?

In this second Manifesto, we also propose an updated version of our pathways describing telco network cloudification strategies for different sizes and types of telco to implement telco cloud. We now have four pathways (we had three in the original Manifesto), as illustrated in the figure below.

The four telco cloud deployment pathways in STL’s Telco Cloud Manifesto 2.0

Source: STL Partners, 2023

Existing subscribers can download the Manifesto at the top of this page. Everyone else, please go here.

If you wish to speak to us about our new Manifesto, please book a call.

Table of contents

  • Executive Summary
    • Recommendations
  • Pathway 1: No way back
    • Two constituencies at operators: Cloud sceptics and cloud advocates
  • Pathway 2: Hyperscalers – friend or foe?
    • Cloud-native network functions are a vital control point telcos must not relinquish
  • Pathway 3: Build own telco cloud competencies before deploying on public cloud
    • AT&T and DISH are important proof points but not applicable to the industry as a whole
    • But telcos will not realise the full benefits of telco cloud unless they, too, become software and cloud businesses
  • Pathway 4: The path to Network-as-a-Service
    • Pathway 4 networks will enable Network-as-a-Service
  • Conclusion: Mastery of cloud-native is key for telcos to create value in the Coordination Age

Related research

Our telco cloud research aligned to this topic includes:

 

Network edge capacity forecast: The role of hyperscalers

Developers need to see sufficient edge capacity

Edge computing comprises a spectrum of potential locations and technologies designed to bring processing power closer to the end-device and source of data, outside of a central data centre or cloud. This report focuses on forecasting capacity at the network edge – i.e. edge computing at edge data centres owned (and usually operated) by telecoms operators. 

This forecast models capacity at these sites for non-RAN workloads. In other words, processing for enterprise or consumer applications and the distributed core network functions required to support them. We cover forecasts on RAN as part of our Telco Cloud research services portfolio.

Forecast scope in terms of edge locations and workload types

Source: STL Partners

Enter your details below to request an extract of the report

The output of the forecast focuses on capacity: number of edge data centres and servers

STL Partners has always argued that for network edge to take off, developers and enterprises need to see sufficient edge capacity to transform their applications to leverage its benefits at scale. The forecast seeks to provide an indication for how this will grow over the next five years, by predicting the number of edge data centres owned by telecoms operators and how many servers they plan to fill these up with.

Hardware vendors have been evolving their server portfolios for a number of years to fit the needs of the telecoms industry. This started with core network virtualisation, as the industry moved away from an appliance-based model to using common-off-the-shelf hardware to support the virtualised LTE core.

As infrastructure moves “deeper” into the edge, the requirements for servers will change. Servers at RAN base stations will not have full data centre structures, but need to be self-contained and ruggedised. 

However, at this stage of the market’s maturity, most servers at the network edge will be in data centre-like facilities. 

There are three key factors determining a telco’s approach and timing for its edge computing data centres

Telecoms operators want to build their network edge capacity where there is demand. In general, the approach has been to create a deployment strategy for network edge data centres that guarantees a level of (low) latency for a certain level of population coverage. In interviews with operators, this has often ranged from 90-99% of the population experiencing sub-10 to 20 millisecond roundtrip latency for applications hosted at their network edge.

The resultant distribution of edge capacity will therefore be impacted by the spread of the population, the size of the country and the telecoms operator’s network topology. For example, in well connected, small countries, such as the Netherlands, low latencies are already achievable with the current networks and location of centralised data centres.

Key factors determining network edge build​

Source: STL Partners

The actual number of sites and speed at which a telecoms operator deploys these sites is driven by three main factors: 

Factor 1: edge computing strategy;

Factor 2: the speed at which it has or will deploy 5G (if it is a mobile operator);

Factor 3: the country’s geographic profile.

Details on the evidence for the individual factors can be found in the inaugural report, Forecasting capacity of network edge computing.

Table of contents

  • Executive summary
  • Introduction to the forecast
  • Key findings this year
  • Regional deep-dives
  • Role of hyperscalers
  • Conclusions
  • Appendix: Methodology

Enter your details below to request an extract of the report

Forecasting capacity of network edge computing

We have updated this forecast. Check the latest report here

Telco edge build has been slower than expected

Telecoms operators have been planning the deployment of edge computing sites for at least the last three years.

Initially, the premise of (mobile) edge computing was to take advantage of the prime real estate telecoms operators had. Mobile operators, in particular, had undergone a process of evolving their network facilities from sites which housed purpose-built networking equipment to data centres as they adopted virtualisation. The consolidation of networking equipment meant there would be spare capacity in these data centres that could easily host applications for enterprises and developers.

That evolution has now been accelerated by the advent of 5G, a mobile generation built on a software-based architecture and IT principles. The result will be a proliferation of edge data centres that will be used for radio access network and core network hardware and software.

However, the reality is that it has taken time for telcos to deploy these sites. There are multiple reasons for this:

  1. Cost: There is a cost to renovate an existing telco site and ensure it meets requirements common for world-class data centres.
  2. Demand: Telcos are hesitant to take on the risk of building out the infrastructure until they are certain of the demand for these data centres.
  3. 5G roll-out: Mobile operators have been prioritising their 5G RAN roll-out in the last two years, over the investment in edge data centres.
  4. Partnership decisions: The discussion around who to partner with to build the edge data centres has become more complicated, because of the number of partners vying for the role and the entrance of new partners (e.g. hyperscalers) which has slowed down decision-making

Enter your details below to request an extract of the report

Early adopters have taken significant strides in their edge strategy in 2021

2020 and 2021 have been seen as inflection points as a number of leading telecoms operators have launched edge sites: e.g. AT&T, Verizon, Cox Communications, SK Telecom and Vodafone. Arguably, this was triggered by AWS announcing partnerships on AWS Wavelength with four telecoms operators in November 2019, with more recently announced (e.g. Telstra in 2021).

Going forward, key questions remain on the trajectory of telco edge build:

  • How many edge data centres will telcos build and make available for consumer/enterprise applications?
  • How much capacity of telco edge computing will there be globally?
  • How much of telco edge computing will be used for distributed core network functions vs. consumer/enterprise applications?
  • What proportion of telco edge data centre capacity will be taken up by hyperscalers’ platforms?

This report seeks to forecast the capacity at telecoms operators’ edge data centres until 2025 and provide clarity on the nature and location of these sites. In other words, how many sites and servers will be available for running applications and where will these sites be located, both physically and logically in the telecoms operators’ networks.

Before reading this report, we would recommend reading STL Partners’ previous publications on telco edge computing to provide context for some of the key themes addressed, for example:

The report focuses on network edge computing sites

Edge computing comprises of a spectrum of potential location and technologies designed to bring processing power closer to the end-device and source of data, outside of a central data centre or cloud. This report focuses on forecasting capacity at the network edge – i.e. edge computing at edge data centres owned (and usually operated) by telecoms operators.

The initial version of the forecast models capacity at these sites for non-RAN workloads. In other words, processing for enterprise or consumer applications and the distributed core network functions required to support them. Future versions of the forecast will expand to RAN.

Forecast scope in terms of edge locations and workload types

The report covers two out of three scenarios for building the network edge

Table of content

  • Executive summary
  • Introduction
  • There are 3 key factors determining telco edge data centre build out
  • Logically, most network edge will be in the transport aggregation layer
  • Geographically, we will see a shift in the concentration of network edge data centres
  • The limited capacity at network edge DCs will largely be used for edge applications
  • Most telecoms operators are taking a hybrid approach to building their edge
  • Conclusions and next steps
  • Appendix: Methodology

Enter your details below to request an extract of the report