MWC 2023: You are now in a new industry

The birth of a new sector: “Connected Technologies”

Mobile World Congress (MWC) is the world’s biggest showcase for the mobile telecoms industry. MWC 2023 marked the second year back to full scale after COVID disruptions. With 88k visitors, 2,400 exhibitors and 1,000 speakers it did not quite reach pre-COVID heights, but remained an enormous scale event. Notably, 56% of visitors came from industries adjacent to the core mobile ecosystem, reflecting STL’s view that we are now in a new industry with a diverse range of players delivering connected technologies.

With such scale It can be difficult to find the significant messages through the noise. STL’s research team attended the event in full force, and we each focused on a specific topic. In this report we distil what we saw at MWC 2023 and what we think it means for telecoms operators, technology companies and new players entering the industry.

Enter your details below to download an extract of the report

STL Partners research team at MWC 2023

STL-Partners-MWC23-research-team

The diversity of companies attending and of applications demonstrated at MWC23 illustrated that the business being conducted is no longer the delivery of mobile communications. It is addressing a broader goal that we’ve described as the Coordination Age. This is the use of connected technologies to help a wide range of customers make better use of their resources.

The centrality of the GSMA Open Gateway announcement in discussions was one harbinger of the new model. The point of the APIs is to enable other players to access and use telecoms resources more automatically and rapidly, rather than through lengthy and complex bespoke processes. It starts to open many new business model opportunities across the economy. To steal the words of John Antanaitis, VP Global Portfolio Marketing at Vonage, APIs are “a small key to a big door”.

Other examples from MWC 2023 underlining the transition of “telecommunications” to a sector with new boundaries and new functions include:

  • The centrality of ecosystems and partnerships, which fundamentally serve to connect different parts of the technology value chain.
  • The importance of sustainability to the industry’s agenda. This is about careful and efficient use of resources within the industry and enabling customers to connect their own technologies to optimise energy consumption and their uses of other scarce resources such as land, water and carbon.
  • An increasing interest and experimentation with the metaverse, which uses connected technologies (AR/VR, high speed data, sometimes edge resources) to deliver a newly visceral experience to its users, in turn delivering other benefits, such as more engaging entertainment (better use of leisure time and attention), and more compelling training experiences (e.g. delivering more realistic and lifelike emergency training scenarios).
  • A primary purpose of telco cloud is to break out the functions and technologies within the operators and network domains. It makes individual processes, assets and functions programmable – again, linking them with signals from other parts of the ecosystem – whether an external customer or partner or internal users.
  • The growing dialogues around edge computing and private networks –evolving ways for enterprise customers to take control of all or part of their connected technologies.
  • The importance of AI and automation, both within operators and across the market. The nature of automation is to connect one technology or data source to another. An action in one place is triggered by a signal from another.

Many of these connecting technologies are still relatively nascent and incomplete at this stage. They do not yet deliver the experiences or economics that will ultimately make them successful. However, what they collectively reveal is that the underlying drive to connect technologies to make better use of resources is like a form of economic gravity. In the same way that water will always run downhill, so will the market evolve towards optimising the use of resources through connecting technologies.

Table of contents

  • Executive Summary
    • The birth of a new sector: ‘Connected technologies’
    • Old gripes remain
    • So what if you are in a new industry?
    • You might like it
    • How to go from telco to connected techco
    • Next steps
  • Introduction
  • Strategy: Does the industry know where it’s going?
    • Where will the money come from?
    • Telcos still demanding their “fair share”, but what’s fair, or constructive?
    • Hope for the future
  • Transformation leadership: Ecosystem practices
    • Current drivers for ecosystem thinking
    • Barriers to wider and less linear ecosystem practices
    • Conclusion
  • Energy crisis sparks efficiency drive
    • Innovation is happening around energy
    • Orange looks to change consumer behaviour
    • Moves on measuring enablement effects
    • Key takeaways
  • Telco Cloud: Open RAN is important
    • Brownfield open RAN deployments at scale in 2024-25
    • Acceleration is key for vRAN workloads on COTS hardware
    • Energy efficiency is a key use case of open RAN and vRAN
    • Other business
    • Conclusion
  • Consumer: Where are telcos currently focused?
    • Staying relevant: Metaverse returns
    • Consumer revenue opportunities: Commerce and finance
    • Customer engagement: Utilising AI
  • Enterprise: Are telcos really ready for new business models?
    • Metaverse for enterprise: Pure hype?
    • Network APIs: The tech is progressing
    • …But commercial value is still unclear
    • Final takeaways:
  • Private networks: Coming over the hype curve
    • A fragmented but dynamic ecosystem
    • A push for mid-market adoption
    • Finding the right sector and the right business case
  • Edge computing: Entering the next phase
    • Telcos are looking for ways to monetise edge
    • Edge computing and private networks – a winning combination?
    • Network APIs take centre stage
    • Final thoughts
  • AI and automation: Opening up access to operational data
    • Gathering up of end-to-end data across multiple-domains
    • Support for network automations
    • Data for external use
    • Key takeaways

Enter your details below to download an extract of the report

Driving the agility flywheel: the stepwise journey to agile

Agility is front of mind, now more than ever

Telecoms operators today face an increasingly challenging market, with pressure coming from new non-telco competitors, the demands of unfamiliar B2B2X business models that emerge from new enterprise opportunities across industries and the need to make significant investments in 5G. As the telecoms industry undergoes these changes, operators are considering how best to realise commercial opportunities, particularly in enterprise markets, through new types of value-added services and capabilities that 5G can bring.

However, operators need to be able to react to not just near-term known opportunities as they arise but ready themselves for opportunities that are still being imagined. With such uncertainty, agility, with the quick responsiveness and unified focus it implies, is integral to an operator’s continued success and its ability to capitalise on these opportunities.

Traditional linear supply models are now being complemented by more interconnected ecosystems of customers and partners. Innovation of products and services is a primary function of these decentralised supply models. Ecosystems allow the disparate needs of participants to be met through highly configurable assets rather than waiting for a centralised player to understand the complete picture. This emphasises the importance of programmability in maximising the value returned on your assets, both in end-to-end solutions you deliver, and in those where you are providing a component of another party’s system. The need for agility has never been stronger, and this has accelerated transformation initiatives within operators in recent years.

Enter your details below to request an extract of the report

Concepts of agility have crystallised in meaning

In 2015, STL Partners published a report on ‘The Agile Operator: 5 key ways to meet the agility challenge’, exploring the concept and characteristics of operator agility, including what it means to operators, key areas of agility and the challenges in the agile transformation. Today, the definition of agility remains as broad as in 2015 but many concepts of agility have crystallised through wider acceptance of the importance of the construct across different parts of the organisation.

Agility today is a pervasive philosophy of incremental innovation learned from software development that emphasises both speed of innovation at scale and carrier-grade resilience. This is achieved through cloud native modular architectures and practices such as sprints, DevOps and continuous integration and continuous delivery (CI/CD) – occurring in virtuous cycle we call the agility flywheel.

The Agility Flywheel

agility-flywheel

Source: STL Partners

Six years ago, operators were largely looking to borrow only certain elements of cloud native for adoption in specific pockets within the organisation, such as IT. Now, the cloud model is more widely embraced across the business and telcos profess ambitions to become software-centric companies.

Same problem, different constraints

Cloud native is the most fundamental version of the componentised cloud software vision and progress towards this ideal of agility has been heavily constrained by operators’ underlying capabilities. In 2015, operators were just starting to embark on their network virtualisation journeys with barriers such as siloed legacy IT stacks, inelastic infrastructures and software lifecycles that were architecture constrained. Though these barriers continue to be a challenge for many, the operators at the forefront – now unhindered by these basic constraints – have been driving a resurgence and general acceleration towards agility organisation-wide, facing new challenges around the unknowns underpinning the requirements of future capabilities.

With 5G, the network itself is designed as cloud native from the ground up, as are the leading edge of enterprise applications recently deployed by operators, alleviating by design some of the constraints on operators’ ability to become more agile. Uncertainty around what future opportunities will look like and how to support them requires agility to run deep into all of an operators’ processes and capabilities. Though there is a vast raft of other opportunities that do not need cloud native, ultimately the market is evolving in this direction and operators should benchmark ambitions on the leading edge, with a plan to get there incrementally. This report looks to address the following key question:

Given the flexibility and driving force that 5G provides, how can operators take advantage of recent enablers to drive greater agility and thrive in the current pace of change?

Enter your details below to request an extract of the report

 

Table of Contents

    • Executive Summary
    • Agility is front of mind, now more than ever
      • Concepts of agility have crystallised in meaning
      • Same problem, different constraints
    • Ambitions to be a software-centric business
      • Cloudification is supporting the need for agility
      • A balance between seemingly opposing concepts
    • You are only as agile as your slowest limb
      • Agility is achieved stepwise across three fronts
      • Agile IT and networks in the decoupled model
      • Renewed need for orchestration that is dynamic
      • Enabling and monetising telco capabilities
      • Creating momentum for the agility flywheel
    • Recommendations and conclusions

NFV and OSS: Virtualization meets reality

Introduction: New virtual network, same old OSS

The relationship between NFV and OSS

This report discusses the relationship between NFV (Network Functions Virtualization) and OSS (Operations Support Systems), and the difficulties that operators and the developer community are facing in migrating from legacy OSS to NFV-based methods for delivering and managing services.

OSS are essentially the software systems and applications that are used to deliver services and manage network resources and elements in legacy telecom networks – such as, to name but a few:

  • Service provisioning: designing and planning a new service, and deploying it to the network elements required to deliver it
  • Service fulfillment: in its broader definition, this corresponds to the ‘order-to-activation’ (O2A) process, i.e. the sequence of actions enabling a service order to be logged, resourced on the network, configured to the relevant network elements, and activated
  • Service assurance: group of processes involved in monitoring network performance and service quality, and in proactively preventing or retrospectively repairing defective performance or network faults
  • Inventory and network resource management: managing the physical and logical network assets and service resources; keeping track of their utilization, condition and availability to be allocated to new services or customers; and therefore, closely related to service fulfillment and assurance.

As these examples illustrate, OSS perform highly specific management functions tied to physical network equipment and components, or Physical Network Functions (PNFs). As part of the migration to NFV, many of these PNFs are now being replaced by Virtualized Network Functions (VNFs) and microservices. NFV is developing its own methods for managing VNFs, and for configuring, sequencing and resourcing them to create, deliver and manage services: so-called Management and Orchestration (MANO) frameworks.The MANO plays a critical role in delivering the expected benefits of NFV, in that it is designed to enable network functions, resources and services to be much more easily programmed, combined, modified and scaled than is possible with PNFs and with OSS that perform isolated functions or are assigned only to individual pieces of kit.The problem that operators are now confronting is that many existing OSS will need to be retained while networks are transitioning to NFV and MANO systems. This is for a number of reasons. 

  • Executive Summary
  • Next Steps
  • Introduction: New virtual network, same old OSS
  • The relationship between NFV and OSS
  • Potential solutions and key ongoing problem areas
  • Conclusion: OSS may ultimately be going away – but not anytime soon
  • OSS-NFV interoperability: three approaches
  • OSS-NFV integration method Number 1: use the existing BSS / OSS to manage both legacy and virtualized services
  • OSS-NFV integration method number 2: Use a flexible combination of existing OSS for legacy infrastructure and services, and MANO systems for NFV
  • OSS-NFV integration method number 3: Replace the existing OSS altogether using a new MANO system
  • Three critical problem areas: service assurance, information models, and skills
  • 1. Closed-loop service fulfillment and assurance
  • 2. A Common Information Model (CIM)
  • 3. Skills, organization and processes

 

  • Figure 1: Classic TMN BSS / OSS framework
  • Figure 2: Telcos’ BSS / OSS strategy for NFV
  • Figure 3: Transition from BSS / OSS-driven to NFV-driven service management as proposed by Amdocs
  • Figure 4: NFV / SDN functions as modules within the Comarch OSS architecture
  • Figure 5: Closed-loop network capacity augmentation using Netscout virtual IP probes and a common data model
  • Figure 6: Service-driven OSS-MANO integration according to Amdocs
  • Figure 7: HPE’s model for OSS-MANO integration
  • Figure 8: BSS and OSS still out of scope in OSM 1.0
  • Figure 9: Subordination of OSS to the MANO system in Open-O
  • Figure 10: Vodafone Ocean platform architecture
  • Figure 11: Vodafone’s VPN+ PoC
  • Figure 12: Operators’ main concerns regarding NFV
  • Figure 13: Closed-loop service fulfillment and assurance
  • Figure 14: Relationship between Information Model and Data Models

The Devil’s Advocate: SDN / NFV can never work, and here’s why!

Introduction

The Advocatus Diaboli (Latin for Devil’s Advocate), was formerly an official position within the Catholic Church; one who “argued against the canonization (sainthood) of a candidate in order to uncover any character flaws or misrepresentation evidence favouring canonization”.

In common parlance, the term a “devil’s advocate” describes someone who, given a certain point of view, takes a position they do not necessarily agree with (or simply an alternative position from the accepted norm), for the sake of debate or to explore the thought further.

SDN / NFV runs into problems: a ‘devil’s advocate’ assessment

The telco industry’s drive toward Network Functions Virtualization (NFV) got going in a major way in 2014, with high expectations that the technology – along with its sister technology SDN (Software-Defined Networking ) – would revolutionize operators’ abilities to deliver innovative communications and digital services, and transform the ways in which these services can be purchased and consumed.

Unsurprisingly, as with so many of these ‘revolutions’, early optimism has now given way to the realization that full-scope NFV deployment will be complex, time-consuming and expensive. Meanwhile, it has become apparent that the technology may not transform telcos’ operations and financial fortunes as much as originally expected.

The following is a presentation of the case against SDN / NFV from the perspective of the ‘devil’s advocate’. It is a combination of the types of criticism that have been voiced in recent times, but taken to the extreme so as to represent a ‘damning’ indictment of the industry effort around these technologies. This is not the official view of STL Partners but rather an attempt to explore the limits of the skeptical position.

We will respond to each of the devil’s advocate’s arguments in turn in the second half of this report; and, in keeping with good analytical practice, we will endeavor to present a balanced synthesis at the end.

‘It’ll never work’: the devil’s advocate speaks

And here’s why:

1. Questionable financial and operational benefits:

Will NFV ever deliver any real cost savings or capacity gains? Operators that have launched NFV-based services have not yet provided any hard evidence that they have achieved notable reductions in their opex and capex on the basis of the technology, or any evidence that the data-carrying capacity, performance or flexibility of their networks have significantly improved.

Operators talk a good talk, but where is the actual financial and operating data that supports the NFV business case? Are they refusing to disclose the figures because they are in fact negative or inconclusive? And if this is so, how can we have any confidence that NFV and SDN will deliver anything like the long-term cost and performance benefits that have been touted for them?

 

  • Executive Summary
  • Introduction
  • SDN / NFV runs into problems: a ‘devil’s advocate’ assessment
  • ‘It’ll never work’: the devil’s advocate speaks
  • 1. Questionable financial and operational benefits
  • 2. Wasted investments and built-in obsolescence
  • 3. Depreciation losses
  • 4. Difficulties in testing and deploying
  • 5. Telco cloud or pie in the sky?
  • 6. Losing focus on competitors because of focusing on networks:
  • 7. Change the culture and get agile?
  • 8.It’s too complicated
  • The case for the defense
  • 1. Clear financial and operational benefits:
  • 2. Strong short-term investment and business case
  • 3. Different depreciation and valuation models apply to virtualized assets
  • 4. Short-term pain for long-term gains
  • 5. Don’t cloud your vision of the technological future
  • 6. Telcos can compete in the present while building the future
  • 7. Operators both can and must transform their culture and skills base to become more agile
  • 8. It may be complicated, but is that a reason not to attempt it
  • A balanced view of NFV: ‘making a virtual out of necessity’ without making NFV a virtue in itself